首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
陈静  周雷  吕广才 《电子设计工程》2011,19(18):151-153,160
设计了一种基于单片机的同步闪烁太阳能道钉。利用单片机控制闪烁周期,利用环境光控制闪烁条件,从而实现了同步闪烁。在控制电路中采用了集成电路SL431ASF和BL8505,使得整个电路变的简单可靠,效率高。从而使整个道钉具有安装方便、不用布线、免维护、环保无污染等特点。  相似文献   

2.
光军 《电子世界》1999,(3):37-37
<正> 在城镇道路施工时,夜间通常要在施工现场设置并开启红色警示灯具,以防止夜晚过往人员、车辆发生事故。为了提高警示效果、节省电能和方便使用,警示灯最好工作在闪烁状态,并采用自动控制方式。本文介绍的警示灯控制的电路就具备了闪烁和光控两种功能,即天黑后能控制警示灯自动开启并工作在闪烁状态,天亮后又能将警示灯自动关闭。  相似文献   

3.
以MSC-51系列单片机为核心设计系统来实现对交通灯的控制。该系统能够根据实际的车流量来实现对红绿灯燃亮时间控制、红绿灯循环点亮、倒计时剩秒时黄灯闪烁警示等功能。  相似文献   

4.
太阳能独立光伏发电系统控制系统的研究与设计   总被引:2,自引:0,他引:2  
太阳能具有取之不尽、用之不竭和清洁安全等特点,是理想的可再生能源。太阳能光伏发电技术作为太阳能利用的一个重要组成部分,被认为是二十一世纪最具发展潜力的一种发电方式,对于缓解能源危机、减少环境污染以及减小温室效应具有重要的意义。论文分析研究了基于TMS320F2812 DSP的独立光伏发电系统及其控制系统的硬件设计和软件编程思路。  相似文献   

5.
为进一步加强夜间行车安全,避免夜间视距受限,特研制设计了这种专用交通标志设施。本产品的开发,使得小客车专用道交通标志可主动发光,在夜晚等外界光线无法满足辨认需要的时候,主动发光的交通标志仍然能够清晰的显示指示内容,且标志上文字和外框都镶嵌了发光设备,夜间根据光感应定时开启闪烁提示功能,光线醒目,穿透力强。同时此标志利用太阳能模块供电,白天蓄电,夜间发光,符合节能环保的要求。  相似文献   

6.
为了充分利用太阳能,提高能源的利用效率,文中结合太阳能与C8051F020单片机实现了多功能太阳能路灯的设计;文中通过太阳能提供电源,给各硬件部分供电;C8051F020控制采样函数,并利用LCD显示采样数据的相关信息。文中设计的多功能太阳能路灯具有安全环保、功耗低、外观设计简明大方、实用性强,性能稳定等优点。  相似文献   

7.
太阳能由于具有清洁安全、经济环保的特点,是绿色可再生能源,很贴近国家重视环保的策略。文章主要分析将太阳能转化成为电能的可行性,利用太阳能发电设备将收集到的太阳能转换为电能,设计一个基于单片机的太阳能三段式智能充电器。通过对硬件系统的设计和软件进行模拟,以期实现稳定输出恒定的电流,能为电动车进行供电的可能性提供实践意义。  相似文献   

8.
天合光能12年的高速成长轨迹,给前景广阔却高度分散的太阳能产业画出一个极具标杆意义的参照系。随着国内公众环保意识的全面抬头,清洁技术领域的投资也明显热了起来。以至于去年下半年,国内风电和太阳能光伏发电领域已被管理层“点名”警示存在过剩风险。据不完全统计,全国目前有约6000多家太阳能光热企业,  相似文献   

9.
邓利华  武强  梅卫龙  肖瑶 《电子设计工程》2012,20(24):159-161,164
为使西藏各主要道路管理更加智能化,提高路灯系统的工作效率,本文结合太阳能与SPCE061A单片机实现了藏式特色太阳能智能路灯系统的设计。本项目通过太阳能给各硬件部分供电,SPCE061A控制采样函数,并利用LCD显示采样数据的相关信息,同时根据红外感应和相邻通信技术实现对副灯亮灭的控制。本文设计的藏式特色太阳能智能路灯系统具有安全环保、功耗低、外观设计具有藏式特色、实用性强,性能稳定、人性化等优点。  相似文献   

10.
太阳能作为一种近乎无污染的能源,对于改善地球的整体能源状况和环境意义重大,本文利用电磁感应技术与太阳能,研究和设计了一种基于单片机的太阳能无线充电系统。该系统主要由太阳能单晶硅电池板、无线发射电路、无线接收电路、充电电路、5V降压电路、单片机电路、显示屏等组成。  相似文献   

11.
ZnO films consisting of either polydisperse or monodisperse aggregates of nanocrystallites were fabricated and studied as dye‐sensitized solar‐cell electrodes. The results revealed that the overall energy‐conversion efficiency of the cells could be significantly affected by either the average size or the size distribution of the ZnO aggregates. The highest overall energy‐conversion efficiency of ~4.4% was achieved with the film formed by polydisperse ZnO aggregates with a broad size distribution from 120 to 360 nm in diameter. Light scattering by the submicrometer‐sized ZnO aggregates was employed to explain the improved solar‐cell performance through extending the distance travelled by light so as to increase the light‐harvesting efficiency of photoelectrode film. The broad distribution of aggregate size provides the ZnO films with both better packing and an enhanced ability to scatter the incident light, and thus promotes the solar‐cell performance.  相似文献   

12.
[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) / poly (3-hexylthiophene) (P3HT) heterojunction has not only the absorption in ultraviolet light for PCBM,but also the absorption in visible light for P3HT, which widens the incident light harvest range, improving the photoelectrical response of hybrid solar cell effectively.Using conducting polymers blend heterojunetion consisting of C60 derivatives PCBM and P3HT as charge carrier transferring medium to replace I3-/I- redox electrolyte and dye, a novel flexible solar cell was fabricated in this study.The influence of PCBM/P3HT mass ratio on the photovoltaic performance of the solar cell was also studied.flexible solar cell achieved a light-to-electric energy conversion efficiency of 1.04%, an open circuit voltage fill factor (FF) of 0.46.  相似文献   

13.
With the capability to manipulate the built-in field in solar cells, ferroelectricity is found to be a promising attribute for harvesting solar energy in solar cell devices by influencing associated device parameters. Researchers have devoted themselves to the exploration of ferroelectric materials that simultaneously possess strong light absorption and good electric transport properties for a long time. Here, it is presented a novel and facile approach of combining state-of-art light absorption and electric transport properties with ferroelectricity by the incorporation of room temperature 1D ferroelectric perovskite with 3D organic–inorganic hybrid perovskite (OIHP). The 1D/3D mixed OIHP films are found to exhibit evident ferroelectric properties. It is notable that the poling of the 1D/3D mixed ferroelectric OIHP solar cell can increase the average Voc can be increased from 1.13 to 1.16 V, the average PCE from 20.7% to 21.5%. A maximum power conversion efficiency of 22.7%, along with an enhanced fill factor of over 80% and open-circuit voltage of 1.19 V, can be achieved in the champion device. The enhancement is by virtue of reduced surface recombination by ferroelectricity-induced modification of the built-in field. The maximum power point tracking measurement substantiates the retention of ferroelectric-polarization during the continued operation.  相似文献   

14.
为提高太阳能电池光电转换效率,设计了不得一种太阳能双轴全自动聚光跟踪控制系统,使可以放多个太阳能电池模块的框架平台可以跟踪太阳光旋转,并保持框架平台上的太阳能电池与阳光入射角保持垂直,以达到光能的最大获取率。在考虑太阳的运动轨迹模型的基础上,设计出可以同时跟踪太阳轨迹的二轴框架平台结构,方位轴和俯仰轴。在考虑晴天和阴天等复杂天气情况下,设计太阳运行轨迹跟踪方式和光传感器跟踪方式相结合的自适应智能跟踪方法,全自动地准确跟踪太阳的位置,跟踪精度小于0.4°,最大限度的接收太阳能,提高了太阳能光电转换的效率。  相似文献   

15.
针对固定式太阳能利用装置的光能利用率低,设计一种太阳追踪系统。此系统由单片机智能控制,采用光电传感器检测太阳照射下遮光器的阴影,从而精确定位太阳与太阳能利用装置相对位置,实现太阳能利用装置的全程太阳追踪,使太阳光能最大限度地得到利用。  相似文献   

16.
The discovery of novel materials that possess extraordinary optical properties are of special interest, as they inspire systems for next‐generation solar energy harvesting and conversion devices. Learning from nature has inspired the development of many photonic nanomaterials with fascinating structural colors. 2D photonic nanostructures, inspired by the attractive optical properties found on the inner surfaces of seashells, are fabricated in a facile and scalable way. The shells generate shining clusters for preying on phototactic creatures through interaction with incident solar light in water. By alternately depositing graphene and 2D ultrathin TiO2 nanosheets to form 2D–2D heterostructures and homostructures, seashell‐inspired nanomaterials with well‐controlled parameters are successfully achieved. They exhibit exceptional interlayer charge transfer properties and ultrafast in‐plane electron mobility and present fascinating nacre‐mimicking optical properties and significantly enhanced light‐response behavior when acting as photoelectrodes. A window into the fabrication of novel 2D photonic structures and devices is opened, paving the way for the design of high‐performance solar‐energy harvesting and conversion devices.  相似文献   

17.
With the continuing development of green energy technology, solar energy is the most widely distributed and easily utilized form of energy in nature. High-absorption absorbers over a wide spectrum range are beneficial for solar energy harvest. Herein, a fast and efficient method is developed to fabricate a broadband absorber consisting of quasi-ordered nanoforests and metal nanoparticles using a simple plasma bombardment process on a 4-inch silicon wafer, offering high throughputs that can meet practical application demands. The absorber exhibits high absorption exceeding 90% from 300 to 2500 nm, good absorption stability with negligible disturbance from the polarization and the incident angle of light. This effective absorption behavior can be ascribed to multilevel hybridization of the plasmon resonances in the hybrid structures and cavity mode resonances inside the nanoforests. Furthermore, the absorber is integrated onto a thermopile for photodetection with largely enhanced photoresponse from 532 to 2200 nm. The photoinduced voltage of the devices shows a large increment of 433% at 100 mW cm−2 light power density, in comparison with a contrast pristine thermopile. It is expected that such a broadband absorber holds great potential for multiple applications, including solar steam generation, photodetection, and solar cells.  相似文献   

18.
This study presents a new self‐powered electronic transistor concept “the solar transistor.” The transistor effect is enabled by the functional integration of a ferroelectric‐oxide thin film and an organic bulk heterojunction. The organic heterojunction efficiently harvests photon energy and splits photogenerated excitons into free electron and holes, and the ferroelectric film acts as a switchable electron transport layer with tuneable conduction band offsets that depend on its polarization state. This results in the device photoconductivity modulation. All this (i.e., carrier extraction and poling) is achieved with only two sandwiched electrodes and therefore, with the role of the gating electrode being taken by light. The two‐terminal solar‐powered phototransistor (or solaristor) thus has the added advantages of a compact photodiode architecture in addition to the nonvolatile functionality of a ferroelectric memory that is written by voltage and nondestructively read by light.  相似文献   

19.
An improved Tungsten light source system for photovoltaic cell testing made from low-cost, commercially available materials is presented as an alternative to standard expensive testing equipment. In this work, spectral correction of the Tungsten light source is achieved by increasing the color temperature to ??5200 K using inexpensive commercially available filters. Spectral measurements of the enhanced light source reveal that a better spectrum match towards the solar spectrum is achieved than what has been previously demonstrated. Specifically, the improved solar spectrum match is achieved by substantial filtering of the infrared range. The proposed setup is used to evaluate the performance of both silicon and organic based photovoltaic cells.  相似文献   

20.
The requirement of high‐temperature calcination for titanium dioxide in (solid‐state) dye‐sensitized solar cells (DSSCs) implies challenges with respect to reduced energy consumption and the potential for flexible photovoltaic devices. Moreover, the use of dye molecules increases production costs and leads to problems related with dye bleaching. Therefore, fabrication of dye‐free hybrid solar cells at low temperature is a promising alternative for current DSSC technology. In this work the authors fabricate hierarchically structured titania thin films by combining a polystyrene‐block‐polyethylene oxide template assisted sol–gel synthesis with nano‐imprint lithography at low temperatures. The achieved films are filled with poly(3‐hexylthiophene) to form the active layer of hybrid solar cells. The surface morphology is probed via scanning electron microscopy and atomic force microscopy, and the bulk film morphology is examined with grazing incidence X‐ray scattering. Good light absorption by the active layer is proven by UV–vis spectroscopy. An enhancement in light absorption is observed and ascribed to light scattering in mesoporous titania films with imprinted superstructures. Accordingly a better photovoltaic performance is found for nano‐imprinted solar cells at various angles of light incidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号