首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delay tolerant networks are a class of ad hoc networks that enable data delivery even in the absence of end‐to‐end connectivity between nodes, which is the basic assumption for routing in ad hoc networks. Nodes in these networks work on store‐carry and forward paradigm. In addition, such networks make use of message replication as a strategy to increase the possibility of messages reaching their destination. As contact opportunities are usually of short duration, it is important to prioritize scheduling of messages. Message replication may also lead to buffer congestion. Hence, buffer management is an important issue that greatly affects the performance of routing protocols in delay tolerant networks. In this paper, Spray and Wait routing protocol, which is a popular controlled replication‐based protocol for delay tolerant networks, has been enhanced using a new fuzzy‐based buffer management strategy Enhanced Fuzzy Spray and Wait Routing, with the aim to achieve increased delivery ratio and reduced overhead ratio. It aggregates three important message properties namely number of replicas of a message, its size, and remaining time‐to‐live, using fuzzy logic to determine the message priority, which denotes its importance with respect to other messages stored in a node's buffer. It then intelligently selects messages to schedule when a contact opportunity occurs. Because determination of number of replicas of a message in the network is a difficult task, a new method for estimation of the same has been proposed. Simulation results show improved performance of enhanced fuzzy spray and wait routing in terms of delivery ratio and resource consumption. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
移动自组织网络资源有限,且节点之间共享无线信道并以协作的方式完成消息转发,导致所传输消息的机密性较为脆弱。为保护消息内容的机密性,该文提出一种间断连接移动自组织网络中的消息转发机制。各节点对原始消息进行切割,并利用多副本消息转发过程的冗余性和节点相似性控制各片段消息在不相交的路径上进行转发,进而由网络中的摆渡节点收集、检验并还原、加密得到仅目的节点能够解密的完整消息,确保转发过程中消息的机密性、完整性。数值分析表明所提机制在保障网络性能前提下,能有效保护消息的机密性。  相似文献   

3.
In delay tolerant vehicular networks, gossip is an efficient forwarding scheme, which significantly reduces the message transmission overhead while maintaining a relatively high transmission rate in the high mobility vehicular environment. This mechanism requires vehicles as the network nodes to forward messages according to the system-defined gossip probability in a cooperative and selfless way among all the vehicles in the system. However, in the real word vehicular networks, most of the vehicular nodes exhibit selfish and non-collaboration behaviors to reduce the gossip probability in order to save their own energy and other limited resources in the vehicular nodes. In this paper, we study how node selfishness influences the performance of energy-constrained gossip forwarding based vehicular networks. We consider two typical forms of selfishness in the realistic vehicular networks: individual selfishness and social selfishness, and study the networking performance by focusing on the average message transmission delay and mean transmission cost. First, we model the message transmission process with selfish behaviors in the gossip forwarding based delay tolerant vehicular networks using a continuous time Markov chain. Based on this useful model, we derive closed-form formulae for average message transmission delay and mean transmission cost. Then, we give extensive numerical results to analyze the impact of selfishness on system performance of the vehicular networks. The results show that gossip forwarding in delay tolerant vehicular networks is robust to selfish behaviors since even when they increase the message transmission delay, there is a gain on the message transmission cost.  相似文献   

4.

Delay tolerant networks (DTNs) are a newest class of networks that have the ability to provide connectivity to areas that are yet to be served by conventional networks. Routing in DTN is a tough task because nodes have no prior information about the partitioned network and transfer opportunities between peer nodes are limited. A node in a DTN delivers messages to the destination using the store and forward strategy. Messages are transmitted to multiple intermediate relay nodes encountered in order to increase the opportunity for the message to reach the destination. Encounter duration is the time period in which a pair or more mobile nodes move into the communication range of each other and hence are able to transfer messages between them. Since the node movements are arbitrary, the encounter duration is unpredictable. This research work proposes a novel encounter based fuzzy logic routing (EFLR) scheme to maximize message delivery with reduced overhead. The fuzzy based utility computation is used for finding a better node to forward messages as well as to drop messages from buffer. Simulation results reveal that EFLR performs better than other existing DTN routing protocols.

  相似文献   

5.
A Vehicular Ad hoc Network is a type of wireless ad hoc network that facilitates ubiquitous connectivity between vehicles in the absence of fixed infrastructure. Source based geographical routing has been proven to perform well in unstable vehicular networks. However, these routing protocols leverage beacon messages to update the positional information of all direct neighbour nodes. As a result, high channel congestion or problems with outdated neighbour lists may occur. To this end, we propose a street-aware, Intelligent Beaconless (IB) geographical forwarding protocol based on modified 802.11 Request To Send (RTS)/ Clear To Send frames, for urban vehicular networks. That is, at the intersection, each candidate junction node leverage digital road maps as well as distance to destination, power signal strength of the RTS frame and direction routing metrics to determine if it should elect itself as a next relay node. For packet forwarding between Intersections, on the other hand, the candidate node considers the relative direction to the packet carrier node and power signal strength of the RTS frame as routing metrics to elect itself based on intelligently combined metrics. After designing the IB protocol, we implemented it and compared it with standard protocols. The simulation results show that the proposed protocol can improve average delay and successful packet delivery ratio in realistic wireless channel conditions and urban vehicular scenarios.  相似文献   

6.

The vehicular delay-tolerant network is the real-life application based area of Delay tolerant network where communication takes place using vehicular nodes and roadside units. The topology used in vehicular networks is highly dynamic by architecture due to the use of moving vehicular nodes. It operates in such a scenario where a direct path between source and destination remains absent on the most piece of the time. In case of non-existence of connected path vehicular delay-tolerant network works opportunistically and uses the same store, carry, and forward paradigm as Delay Tolerant Network. However, the routing protocols designed for vehicular delay-tolerant network faces crucial challenges like inadequate relay node, incomplete data transfer, a large number of packet drop, and uncertain delivery time. In this research paper, we propose a novel routing strategy for the vehicular delay-tolerant network. The proposed routing strategy selects efficient vehicular relay node for complete packet transfer and intelligently reduces the packet drop for timely packet delivery. We implement the proposed routing strategy in the ONE simulator; the ONE simulator provides an opportunistic environment for nodes. We analyze the performance of the proposed strategy under various simulations results using different parameters. The results show that the proposed strategy outperforms standard routing protocols in terms of considered parameters and provide an efficient solution for the problem of disconnection.

  相似文献   

7.
Vehicular Ad hoc NETwork (VANET) is considered as the appropriate candidate for provisioning risk‐free environment that confirms secure cooperation and very minimal congestion among the vehicular nodes in the network. The establishment and maintenance of connectivity between vehicular nodes are determined to be influenced by the existence of Non‐Line‐of‐Sight (NLOS) nodes that introduce channel congestion and broadcasting storm into the network during emergency message delivery. Thus, NLOS nodes need to be localized with optimality for enhancing the emergency data delivery rate with minimized latency degree and energy consumption in the network. In this paper, Harris Hawk Optimization Algorithm (HHOA)‐based NLOS nodes Localization Scheme (NLOS‐LS) (HHOA‐NLOS‐LS) is proposed for facilitating reliable data dissemination among vehicular nodes under emergency situations. HHOA utilizes chasing styles and cooperative behavior of Harris hawks termed as surprise pounce for efficient localization based on reference nodes. In particular, the intelligent strategy of Harris hawks' behavior in attacking the prey in all directions is included for localizing the NLOS nodes from the reference nodes positioned in all directions of the network. It is capable of localizing the NLOS nodes based on adaptive localizing (chasing) styles attained through reference nodes dependingon the dynamic nature of NLOS nodes. The simulation results prove that the mean localization rate is improved by 23.21%, mean neighborhood awareness rate by 19.82%, mean emergency message delivery rate by 18.32% and mean channel utilization by 17.28% when compared to the baseline Weighted Inertia‐based Dynamic Virtual Bat Algorithm (WIDVBA)‐based NLOS‐LS (WIDVBA‐NLOS‐LS), Cooperative Volunteer Vehicular Nodes (CVVN)‐based NLOS‐LS (CVVN‐NLOS‐LS), Vote Selection Mechanisms and Probabilistic Data Association (VSMPDA)‐based NLOS‐LS (VSMPDA‐NLOS‐LS), and Weighted Distance Hyperbolic Prediction (WDHP)‐based NLOS‐LS (WDHP‐NLOS‐LS) for a varying number of vehicular nodes in the network.  相似文献   

8.
程黛月  章国安  叶翔 《电信科学》2015,31(9):143-148
摘要:针对车辆自组织网络(vehicular Ad Hoc network,VANET)中紧急消息的传输,提出一个改进的二元分割广播(MBPAB)协议。协议将通信范围迭代划分成小的区域,寻找离发送节点最远区域内的车辆,对紧急消息执行转发,通过减少转发跳数,提高消息传播速度。通过引入MAC(medium access control)子层的微型分布式帧间间隔(mini-DIFS),赋予对紧急消息以更高的优先级接入通信信道。仿真结果表明,在VANET 中, MBPAB协议与现有的广播协议相比,在通信时延和消息传播速度方面有更好的性能表现。  相似文献   

9.
The reliability of data dissemination in vehicular ad hoc network (VANET) necessitates maximized cooperation between the vehicular nodes and the least degree of congestion. However, non‐line of sight (NLOS) nodes prevent the establishment and sustenance of connectivity between the vehicular nodes. In this paper, a hybrid seagull and thermal exchange optimization (TEO) algorithm‐based NLOS node detection technique is proposed for enhancing cooperative data dissemination in VANETs. It inherits three different versions of the proposed hybridized algorithm; three different approaches for localization of NLOS nodes depending upon its distance from the reference nodes are incorporated. It is considered as a reliable attempt in effective NLOS node localization as it is predominant in maintaining the balancing the degree of exploration and exploitation in the search process. In the first variant, the method of the roulette wheel is utilized for selecting one among the two optimization algorithm. In the second adoption, this hybridization algorithm combines TEO algorithm only after the iteration of SEOA algorithm. In the final adoption, the predominance of the seagull attack mode is enhanced by including the heat exchange formula of TEO algorithms for improving exploitation capability. The simulation experiments of the proposed HS‐TEO‐NLOS‐ND scheme conducted using EstiNet 8.1 exhibited its reliability in improving the emergency message delivery rate by 14.86%, a neighborhood awareness rate by 13%, and the channel utilization rate by 11.24%, compared to the benchmarked techniques under the evaluation done with different number of vehicular nodes and NLOS nodes in the network.  相似文献   

10.
Disruption‐tolerant network (DTN) implementation is subject to many routing constraints like limited knowledge of the network and intermittent connections with no end‐to‐end path existence. In this paper, the researchers propose trusted‐cluster–based routing protocol (TCR) for routing in DTN. TCR uses the experiential learning model that integrates neural network‐based bipolar sigmoid activation function to form trusted‐cluster DTN. TCR works in two phases: firstly to form a trusted‐cluster and secondly to identify cluster heads to direct network traffic through them. After the formation of the trusted‐cluster, a cluster head is chosen for a set period, thus instigating stability in the network. These trust values are attached to the node's route cache to make competitive routing decisions by relaying a message to the other trusted intermediate nodes only. With negative trust value, any node is deprived of participation in the network. This way, TCR eliminates malicious or selfish nodes to participate in the DTN network and minimizes the number of messages forwarded in a densely populated DTN. Also, this implementation conserves sufficient buffer memory to reach the destined node. The TCR's performance with other DTN routing schemes, namely, epidemic and trust‐based routing, is compared using multiple simulations runs. The proposed work is verified using mobility traces from Community Resource for Archiving Wireless Data At Dartmouth, and the experimental result shows the elimination of selfish nodes participating in the DTN. The simulation result shows an increase of 19% in message delivery by forwarding only to a trusted intermediate node possible.  相似文献   

11.

Internet of Things (IoT) is a heterogeneous network of interconnected things where users, smart devices and wireless technologies, collude for providing services. It is expected that a great deal of devices will get connected to the Internet in the near future. Opportunistic networks(OppNet) are a class of disruption tolerant networks characterized by uncertain topology and intermittent connectivity between the nodes. Opportunistic Internet of Things(OppIoT) is an amalgamation of the OppNet and IoT exploiting the communication between the IoT devices and the communities formed by humans. The data is exposed to a wide unfamiliar audience and the message delivery is dependent on the residual battery of the node, as most of the energy is spent on node discovery and message transmission. In such a scenario where a huge number of devices are accommodated, a scalable, adaptable, inter-operable, energy-efficient and secure network architecture is required. This paper proposes a novel defense mechanism against black hole and packet fabrication attacks for OppIoT, GFRSA, A Green Forwarding ratio and RSA (Rivest, Shamir and Adleman) based secure routing protocol. The selection of the next hop is based on node’s forwarding behavior, current energy level and its predicted message delivery probability. For further enhancing the security provided by the protocol, the messages are encrypted using asymmetric cryptography before transmission. Simulations performed using opportunistic network environment (ONE) simulator convey that GFRSA provides message security, saves energy and outperforms the existing protocols, LPRF-MC (Location Prediction-based Forwarding for Routing using Markov Chain) and RSASec (Asymmetric RSA-based security approach) in terms of correct packet delivery by 27.37%, message delivery probability is higher by 34.51%, number of messages dropped are reduced by 15.17% and the residual node energy is higher by 14.08%.

  相似文献   

12.
A new global positioning system (GPS)-based routing protocol for ad hoc networks, called zone-based hierarchical link state (ZHLS) routing protocol, is proposed. In this protocol, the network is divided into nonoverlapping zones. Each node only knows the node connectivity within its zone and the zone connectivity of the whole network. The link state routing is performed on two levels: focal node and global zone levels. Unlike other hierarchical protocols, there is no cluster head in this protocol. The zone level topological information is distributed to all nodes. This “peer-to-peer” manner mitigates traffic bottleneck, avoids single point of failure, and simplifies mobility management. Since only zone ID and node ID of a destination are needed for routing, the route from a source to a destination is adaptable to changing topology. The zone ID of the destination is found by sending one location request to every zone. Simulation results show that our location search scheme generates less overhead than the schemes based on flooding. The results also confirm that the communication overhead for creating and maintaining the topology in the proposed protocol is smaller than that in the flat LSR protocol. This new routing protocol provides a flexible, efficient, and effective approach to accommodate the changing topology in a wireless network environment  相似文献   

13.
Network architecture based on opportunistic Delay Tolerant Network (DTN) is best applicable for post-disaster scenarios, where the controlling point of relief work is any fixed point like a local school building or a hospital, whose location is known to everyone. In this work, 4-tier network architecture for post-disaster relief and situation analysis is proposed. The disaster struck area has been divided into clusters known as Shelter Points (SP). The architecture consists of mobile Relief Workers (RW) at tier 1, Throw boxes (TB) at tier 2 placed at fixed locations within SPs. Data Mules (DM) like vehicles, boats, etc. operate at tier 3 that provide inter-SP connectivity. Master Control Station (MCS) is placed at tier 4. The RWs are provided with smart-phones that act as mobile nodes. The mobile nodes collect information from the disaster incident area and send that information to the TB of its SP, using DTN as the communication technology. The messages are then forwarded to the MCS via the DMs. Based on this architecture, a novel DTN routing protocol is proposed. The routing strategy works by tracking recent direction of movement of mobile nodes by measuring their consecutive distances from the destination at two different instants. If any node moves away from the destination, then it is very unlikely to carry its messages towards the destination. For a node, the fittest node among all its neighbours is selected as the next hop. The fittest node is selected using parameters like past history of successful delivery and delivery latency, current direction of movement and node’s recent proximity to the destination. Issues related to routing such as fitness of a node for message delivery, buffer management, packet drop and node energy have been considered. The routing protocol has been implemented in the Opportunistic Networks Environment (ONE) simulator with customized mobility models. It is compared with existing standard DTN routing protocols for efficiency. It is found to reduce message delivery latency and improve message delivery ratio by incurring a small overhead .  相似文献   

14.
Efficient message dissemination in vehicular ad-hoc networks (VANETs) is crucial for supporting communication among vehicles and also between users and the Internet, with minimal delay and overhead but maximum reachability. To improve the message dissemination in these networks, we show the need to study the graph-theoretic properties of VANETs, since they neither follow the small-world nor the scale-free network characteristics often found in large self-organized networks. We consider three fundamental properties: connectivity, node degree, and clustering coefficient. For each property, we develop and validate analytical models for both the urban and highway scenarios, building an extensive graph structure perspective on VANETs. With this, we see how connectivity changes with network density, that VANETs exhibit truncated Gaussian node degree distributions, and that network clustering coefficients do not depend on the network’s size or density. We then show how these results can be used to generate individual behavior favorable to the whole network using local information. The usefulness of this new approach is demonstrated by proposing new mechanisms to enhance the urban vehicular broadcasting protocol UV-CAST. Our results show that these new mechanisms lead to excellent performance while reducing the overhead in the UV-CAST protocol.  相似文献   

15.
Application and communication protocols in dynamic ad-hoc networks are exposed to physical limitations imposed by the connectivity relations that result from mobility. Motivated by vehicular freeway scenarios, this paper analyzes a number of important connectivity metrics for instantaneous snapshots of stochastic geographic movement patterns: (1) The single-hop connectivity number, corresponding to the number of single-hop neighbors of a mobile node; (2) the multi-hop connectivity number, expressing the number of nodes reachable via multi-hop paths of arbitrary hop-count; (3) the connectivity distance, expressing the geographic distance that a message can be propagated in the network on multi-hop paths; (4) the connectivity hops, which corresponds to the number of hops that are necessary to reach all nodes in the connected network. The paper develops analytic expressions for the distributions and moments of these random variables for general stationary MAP processes on a one dimensional space. The numerical results compare bursty vehicular traffic with independent movement scenarios described by a Poisson process, illustrate in examples the impact of a random communication range, and demonstrate the usefulness of MAP processes via comparison with vehicular simulation traces.  相似文献   

16.
Routing in delay tolerant networks (DTNs) is challenging due to their unique characteristics of intermittent node connectivity. Different protocols (single-, multi-copy, erasure-coding-based etc.) utilizing store-carry-and-forward paradigm have been proposed to achieve routing of messages in such environments by opportunistic message exchanges between nodes that are in the communication range of each other. The sparsity and distributed nature of these networks together with the lack of stable connectivity between source destination pairs make these networks vulnerable to malicious nodes which might attempt to learn the content of the messages being routed between the nodes. In this paper, we study DTNs in which malicious nodes are present, to which we refer to as compromised DTNs. We discuss and analyze the effects of presence of malicious nodes on routing of messages in compromised DTNs. We propose a two period routing approach which aims at achieving the desired delivery ratio by a given delivery deadline in presence of malicious nodes. Our simulation results with both random networks and real DTN traces show that, with proper parameter setting, the proposed method can achieve delivery ratios which surpass those reached by other algorithms by a given delivery deadline.  相似文献   

17.
The routing performance in mobile ad hoc networks (MANETs) relies on the co-operation of the individual nodes that constitute the network. The existence of misbehaving nodes may paralyze the routing operation in MANETs. To overcome this behavior, the trustworthiness of the network nodes should be considered in the route selection process combined with the hop count. The trustworthiness is achieved by measuring the trust value for each node in the network. In this paper, a new protocol based on self monitoring (agent-based) and following the dynamic source routing (DSR) algorithm is presented. This protocol is called agent-based trusted dynamic source routing protocol for MANETs. The objective of this protocol is to manage trust information locally with minimal overhead in terms of extra messages and time delay. This objective is achieved through installing in each participated node in the network a multi-agent system (MAS). MAS consists of two types of agents: monitoring agent and routing agent. A new mathematical and more realistic objective model for measuring the trust value is introduced. This model is weighted by both number and size of routed packets to reflect the “selective forwarding” behavior of a node. The performance evaluation via simulation shows that our protocol is better than standard and trusted DSR. The simulation is done over a variety of environmental conditions such as number of malicious nodes, host density and movement rates.  相似文献   

18.
In a vehicular ad hoc network, trust between vehicles is vital to efficiently transmit the data among vehicles. Secure node selection is based on the trust value that a node can calculate during its operations in a dynamic network. This will increase the confidentiality level of the network, thus improving the network performance. However, defining confidentiality is not a crisp task, rather it can range between certain limits. A fuzzy‐based inference engine can be used to optimally define these limits. In this paper, a fuzzy‐based trust prediction model is proposed to effectively compute the trust of other vehicles for the secure path formation in vehicular ad hoc networks. In the designed approach, each vehicle models the trustworthiness of the neighbors in its cognitive range to dynamically select the relay nodes that can be used for data transmission and the election of the appropriate path for routing in vehicular ad hoc network environment. The results and analysis of the proposed model over the standard protocols are presented using simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Due to the instability and intermittent connectivity of links among the nodes and the lack of connectivity in opportunistic network, it is not feasible to use common routing for delivering messages. The only practical method for routing and delivering messages is to use the store-carry-forward routing method. As a case in point, spray and wait is considered to be one of the most appropriate routing methods. The efficiency of this method depends directly on the proper selection of the next hop and the number of copies when it encounters a node. In this paper, a method was proposed that constantly selects the next node and considers the number of copies a node can deliver. In the proposed method, the selection of the next node and the number of message copies to be transmitted by the next hop are based on message carrying time and the probability of message delivery. The network model, based on Markov chain, is extended for analysis. Simulation and analysis results showed that significant enhancement is obtained with the proposed method when measuring metrics such as delay, delivery ratio and copy do comparisons with similar methods.  相似文献   

20.
刘春蕊  张书奎  贾俊铖  林政宽 《电子学报》2016,44(11):2607-2617
机会网络是一种不需要在源节点和目的节点之间存在完整路径,利用节点移动带来的相遇机会实现网络通信的延迟容忍自组织网络,它以“存储-携带-处理-转发”的模式进行.为实现互不相交簇间的信息传输,本文设计了一种带阈值的簇移动模型CMMT,并提出了一种基于摆渡(Ferry)节点与簇节点协作的路由算法(CBSW).该算法减少了冗余的通信和存储开销,以及在Spray阶段簇节点没有遇到目的节点或摆渡节点,进入Wait阶段携带消息的节点采用直接分发方式只向目的节点传输等问题.仿真实验表明,CBSW算法能够增加传输成功率,减少网络开销和传输延迟.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号