首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Massive multiple-input multiple-output (MIMO) requires a large number (tens or hundreds) of base station antennas serving for much smaller number of terminals, with large gains in energy efficiency and spectral efficiency compared with traditional MIMO technology. Large scale antennas mean large scale radio frequency (RF) chains. Considering the plenty of power consumption and high cost of RF chains, antenna selection is necessary for Massive MIMO wireless communication systems in both transmitting end and receiving end. An energy efficient antenna selection algorithm based on convex optimization was proposed for Massive MIMO wireless communication systems. On the condition that the channel capacity of the cell is larger than a certain threshold, the number of transmit antenna, the subset of transmit antenna and servable mobile terminals (MTs) were jointly optimized to maximize energy efficiency. The joint optimization problem was proved in detail. The proposed algorithm is verified by analysis and numerical simulations. Good performance gain of energy efficiency is obtained comparing with no antenna selection.  相似文献   

2.
MMSE准则下近似最优MIMO分组并行检测算法   总被引:2,自引:0,他引:2       下载免费PDF全文
芮国胜  张海波  田文飚  张洋  邓兵  李廷军 《电子学报》2013,41(10):1881-1887
在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算法采用MMSE准则下格归约算法改进分组后条件较好子信道矩阵特性,并在消除参考信号基础上利用改进的子信道矩阵对剩余信号以非线性方式进行检测.仿真结果表明:对4×4和6×6MIMO系统,该算法检测性能达到最优,对于8×8 MIMO系统,比最优算法所需信噪比提高约1dB.复杂度分析表明:相比现有信道分组检测算法,相同检测性能下该算法在6×6 MIMO系统中复杂度降低90%以上,在8×8 MIMO系统中复杂度降低98%以上.  相似文献   

3.
Massive MIMO和波束赋形是5G的一项关键技术。5G将LTE时期的MIMO进行了扩展和延伸,即LTE的MIMO最多8天线,到5G扩增为16/32/64/128天线,被称为“大规模”的MIMO。本案通过对不同场景Massive MIMO波束调整方案进行研究,输出场景化的设置方案,以期为后期Massive MIMO优化提供参考。  相似文献   

4.
Massive multiple-input multiple-output (MIMO) can considerably enhance the “spectral efficiency and energy efficiency” since it is a major technique for future wireless networks. Thus, the performance needs a huge count of base station antennas to serve a smaller number of terminals in conventional MIMO methodology. Large-scale radio frequency (RF) chains represent the large-scale antennas. There is a need of implementing an effective massive MIMO system for maximizing the efficient performance of the system with high “spectral efficiency and energy efficiency” owing to the high cost of RF chains, and the higher power consumption. In this paper, a massive MIMO communication system is implemented to satisfy the requirements regarding “energy efficiency and spectral efficiency.” Here, the number of base station antennas, the transmit power, and beam forming vectors are optimized to maximize “energy efficiency and spectral efficiency” when the channel capacity is known to be higher than some threshold values. The novelty of this work is a new hybrid optimization adaptive shark smell-coyote optimization (ASS-CO) algorithm is developed for improving energy efficiency. The optimization is done with the help of the hybrid optimization ASS-CO Algorithm. The proposed ASS-CO algorithm-based massive MIMO communication system is evaluated by experimental analysis. From the result analysis, the maximum resource efficiency is observed by SS-WOA, which is 6.6%, 50%, 6.6%, 6.6%, and 6.6% maximized than rider optimization algorithm (ROA), spotted hyena optimization (SHO), lion algorithm (LA), Shark Smell Optimization (SSO), and Coyote Optimization Algorithm (COA) by taking the count of base stations as 4. The superior performance enhancement regarding “spectral efficiency and energy efficiency” is accomplished over the traditional systems.  相似文献   

5.
袁艳  申敏 《电子测试》2009,(2):22-25
在移动通信技术迅速发展的今天,差错控制技术在保证通信可靠性方面起到越来越重要的作用,因此本文研究了多输入多输出系统中基于天线选择技术的混合自动请求重传技术。发送端的数据经过CRC校验,信道编码、调制,然后经过串/并变换之后发送出去,接收端接收到信息之后经过相反的处理,然后反馈相关的重传信息给发送端,重传时在发射天线集中选择最优的天线组合进行数据重传。本文提出了基于准信道信息的QR分解天线选择算法,研究结果表明,基于QR分解的天线选择算法与穷尽搜索的最优天线选择算法性能相当,但是运算量却少了很多,因此更加适合于运用到现代移动通信系统中。  相似文献   

6.
Malik  Saransh  Moon  Sangmi  Kim  Bora  You  Cheolwoo  Liu  Huaping  Kim  Jeong-Ho  Kim  Jihyung  Hwang  Intae 《Wireless Personal Communications》2017,95(4):4425-4440

Massive MIMO (also known as the “Large-Scale Antenna System”) enables a significant reduction of latency on the air interface with the use of a large excess of service-antennas over active terminals and time division duplex operation. For large-scale MIMO, several technical issues need to be addressed (e.g., pilot pattern design and low-antenna power transmission design) and theoretically addressed (e.g., channel estimation and power allocation schemes). In this paper, we analyze the ergodic spectral efficiency upper bound of a large-scale MIMO, and the key technologies including channel uplink detection. We also present new approaches for detection and power allocation. Assuming arbitrary antenna correlation and user distributions, we derive approximations of achievable rates with linear detection techniques, namely zero forcing, maximum ratio combining, minimum mean squared error (MMSE) and eigen-value decomposition power allocation (EVD-PA). While the approximations are tight in the large system limit with an infinitely large number of antennas and user terminals, they also match our simulations for realistic system dimensions. We further show that a simple EVD-PA detection scheme can achieve the same performance as MMSE with one order of magnitude fewer antennas in both uncorrelated and correlated fading channels. Our simulation results show that our proposal is a better detection scheme than the conventional scheme for LSAS. Also, we used two channel environment channels for further analysis of our algorithm: the Long Term Evolution Advanced channel and the Millimeter wave Mobile Broadband channel.

  相似文献   

7.
For reducing the computational complexity of the problem of joint transmit and receive antenna selection in Multiple-Input- Multiple-Output (MIMO) systems, we present a concise joint transmit/receive antenna selec-tion algorithm. Using a novel partition of the channel matrix, we drive a concise formula. This formula enables us to augment the chan-nel matrix in such a way that the computational complexity of the greedy Joint Transmit/Receive Antenna Selection (JTRAS) algorithm is reduced by a factor of 4nL, where nL is the number of selected antennas. A de-coupled version of the proposed algorithm is also proposed to further improve the efficien-cy of the JTRAS algorithm, with some capacity degradation as a tradeoff. The computational complexity and the perform-ance of the proposed approaches are evalu-ated mathematically and verified by computer simulations. The results have shown that the proposed joint antenna selection algorithm maintains the capacity perormance of the JTRAS algorithm while its computational complexity is only 1/4nL of that of the JTRAS algorithm. The decoupled version of the proposed algorithm further reduces the computational complexity of the joint antenna selection and has better performance than other decoupling-based algorithms when the selected antenna subset is small as compared to the total number of antennas.  相似文献   

8.
Massive multiple-input multiple-output (MIMO) technology is a promising technique having a high spectral efficiency for future wireless systems. Counterintuitively, the practical issues of transmitted signals are being attenuated by fading, propagation limitations, and implement non-linear precoding are solved by enlarging system dimensions. However, the computational complexity of precoding grows with the system dimensions. The existence block diagonalization (BD) precoding, which completely pre-cancels the multiuser interference is very complicated to implement with the use of a large number of BS antennas, since it considers full multiplexing order. Motivated by the high performance of the BD and generalized for the case when the users have multiple antennas, we propose a structure blocks based on iterative QR decompositions (IQRDs) to compute the precoding scheme. The proposed BLIQR-based precoder designed partitioned the channel matrix into capable square-wise blocks matrix and the IQRDs are applied to the blocks channel matrix. The channel matrix is partitioned such that it can fulfill the multiplexing order for the use in Massive MIMO. The computational complexity of the proposed design is effectively reduced and the sum-rate performance is improved, especially in large number of BS antennas. The performance of the proposed scheme achieves a good trade-off between throughput and computational complexity.  相似文献   

9.
Multiple-input multiple-output (MIMO) systems offer significant enhancements in terms of their data rate and channel capacity compared to traditional systems. However, correlation degrades the system performance and imposes practical limits on the number of antennas that can be incorporated into portable wireless devices. The use of switched parasitic antennas (SPAs) is a possible solution, especially where it is difficult to obtain sufficient signal decorrelation by conventional means. The covariance matrix represents the correlation present in the propagation channel, and has significant impact on the MIMO channel capacity. The results of this work demonstrate a significant improvement in the MIMO channel capacity by using SPA with the knowledge of the covariance matrix for all pattern configurations. By employing the “water-pouring algorithm” to modify the covariance matrix, the channel capacity is significantly improved compared to traditional systems, which spread transmit power uniformly across all the antennas. A condition number is also proposed as a selection metric to select the optimal pattern configuration for MIMO-SPAs.  相似文献   

10.
This paper presents the relationship between antenna structures and the performance of two kinds of compact MIMO antennas in order to find critical factors that affect the capacity of MIMO systems. The relationship between the channel capacity and some factors (antenna efficiency, mutual coupling, correlation) are analyzed based on experimental data under indoor Rayleigh fading environment. Antenna elements mounted in two different configurations (common and separated ground plane) with antenna spacing varying, were investigated at the frequency of 2.6 GHz band experimentally. The good characteristics in the case of separated ground plane show that the proposed antennas, even with small spacing, can still achieve high capacity to combat multipath fading and deliver higher data rates. It demonstrates that multiple antennas could be mounted onto small terminal devices without much loss of capacity. It is also found that mutual coupling has positive impact which could reduce channel correlation; negative effect which could degrade antenna efficiency. In the indoor multipath-rich environment, the negative effect is dominant.  相似文献   

11.
Han  Bin  Jiang  Zheng  Liang  Lin  Chen  Peng  Yang  Fengyi  Bi  Qi 《Wireless Networks》2019,25(1):75-85

Massive multiple-input multiple-output (MIMO) systems, in which base stations are equipped with a large number of antennas in a two-dimensional antenna array, is one of the most promising technologies to improve the spectral efficiency of the fifth generation mobile communication systems (5G). Since there is no short-term channel reciprocity, the frequency-division duplexing (FDD) massive MIMO system has to obtain channel state information with the help of uplink feedback with acceptable overhead. To cope with this issue, we propose the design of joint precoding and scheduling algorithm in FDD multi-cell network. In the algorithm, all the users are firstly grouped by the statistics of channel correlation matrix, then the inter-group interference exiting among intra-cell and inter-cell is eliminated at the first precoding stage. Then users are adaptively scheduled and beamformed at the second precoding stage based on the low dimension effective channel. Finally, the effectiveness of the proposed algorithm is presented through simulations.

  相似文献   

12.
Massive MIMO (multiple-input-multiple-output) is one of the key technologies of 5G mobile cellular networks, which can form a huge antenna array by providing a large number of antennas at the cell base station. It will greatly improve the channel capacity and spectrum utilization and has become a hotspot in the field of wireless communications in recent years. Aiming at the high complexity of channel estimation algorithm for massive MIMO system, a sparse channel estimation algorithm with low complexity is proposed based on the inherent sparsity of wireless communication channel. The algorithm separates the channel taps from the noise space on the basis of the traditional discrete Fourier transform (DFT) channel estimation, so that the channel estimation only needs to calculate the part of the channel tap, so the computational complexity of the algorithm is greatly reduced. The simulation results show that the proposed algorithm can achieve near minimum mean square error (MMSE) performance while maintaining low complexity. Moreover, the Bit Error Rate and Inter-Cell Interference also indicates that the proposed improved algorithm shows better overall performance than the conventional algorithms which makes it suitable from practical perspective.  相似文献   

13.
天线选择是MIMO系统中一项重要的技术,它能从MIMO系统的多个发射天线和多个接收天线中选择出性能最好的一个或几个天线,从而以很小的性能损失换取成本的大幅降低,极大地提高了MIMO系统的性能价格比。最优算法具有较高的复杂度而限制了它的应用,文中从次优的递增递减算法入手,提出了一种具有更低复杂度的递增递减接收天线选择算法。仿真结果表明,该算法以很小的系统容量损失为代价换取了复杂度的降低。  相似文献   

14.
马珺  马林  俞凯  郑敏 《电视技术》2015,39(1):68-71,75
大规模阵列天线技术可用于解决下一代无线通信的频谱有效性和功率有效性问题,对大规模阵列天线成形性能进行了仿真,得出了天线数目增加对均匀线阵方向图成形的影响,并通过计算比较了不同规模天线阵列的波瓣宽度,并仿真分析了不同规模均匀圆阵的方向图,最后研究了信道估计准确度对大规模天线阵列方向图成形性能的影响,仿真得出了信道估计矩阵存在误差时阵列天线方向图的变化。  相似文献   

15.
In Massive MIMO systems for 5G networks,precoding technology is one of the key technologies.Aiming at user side codebook search method of the discrete Fourier transform (DFT) rotation codebook,a low complexity search algorithm was proposed.In this algorithm,all horizontal and vertical codebooks were grouped separately according to the characteristics that the precoding vectors with the same column of DFT rotation codebooks had the smallest chordal distance and the smaller chordal distance have the stronger correlation,and then the optimal horizontal and vertical codewords with maximum channel gain were obtained to form 3D precoding code-books.The simulation results indicate that the searching complexity of the proposed method is significantly reduced under conditions of insuring the system performance,moreover,this advantage becomes greater with the number of antennas increasing.  相似文献   

16.
随着无线通信技术和新型业务的快速发展,人们对数据传输速率提出了更高的需求。为进一步提高数据传输速率,通过增加基站天线数目构建Massive MIMO系统,是一种高效而相对便捷的方式。本文介绍了Massive MIMO研究进展和技术原理,并针对其特有的关键技术信道信息的获取、天线阵列的设计、低复杂度传输技术进行了分析讨论,最后从覆盖、容量、感知和上行干扰四个维度对4G网络上部署的Massive MIMO系统进行了评估分析。  相似文献   

17.
在多输入多输出(MIMO)系统中,天线选择技术平衡了系统的性能和硬件开销,但大规模MI-MO系统收发端天线选择复杂度问题一直没有得到很好的解决.基于信道容量最大化的准则,采用两个二进制编码字符串分别表示发射端和接收端天线被选择的状态,提出将二进制猫群算法(BCSO)应用于多天线选择中,以MIMO系统信道容量公式作为猫群的适应度函数,将收发端天线选择问题转化为猫群的位置寻优过程.建立了基于BCSO的天线选择模型,给出了算法的实现步骤.仿真结果表明所提算法较之于基于矩阵简化的方法、粒子优化算法具有更好的收敛性和较低的计算复杂度,选择后的系统信道容量接近于最优算法,非常适用于联合收发端天线选择的大规模MIMO系统中.  相似文献   

18.
讨论了有关 MIMO 无线系统中的天线子集选择性能的问题。首先建立了 MIMO 信道模型,对信道模型进行了分析,接着对信道矩阵为非满秩的情况进行了研究,分别采用几种组合对发射、接收天线进行选择,得出不同组合对信道容量的影响。仿真结果表明,选择发射天线可以增加信道容量,选择接收天线虽然无助于增加信道容量,但在不会严重降低信道容量的前提下,可以降低系统的成本。  相似文献   

19.
大规模多输入多输出(Massive MIMO)技术通过在基站端配置大规模天线能有效提升5G蜂窝系统容量。考虑信道估计误差对系统性能的影响,该文在多小区大规模MIMO系统中形成了用户信干噪比的非溢出概率约束下最小化系统功率的优化问题。针对非凸概率约束中下行波束难于求解的问题,该文根据矩阵迹的性质将优化问题中的非凸约束缩放,进而提出上下行对偶算法求解波束矢量。为进一步减少多小区系统中信令开销,基于大系统分析,提出了仅采用大尺度信息的分布式算法。仿真结果表明,所提的分布式算法与对偶算法相比,在保证用户信干噪比的概率约束时,降低了大规模MIMO系统中传输瞬时信道状态信息的开销,同时具有良好的鲁棒性。  相似文献   

20.
Performance analysis and design optimization of LDPC-coded MIMO OFDM systems   总被引:11,自引:0,他引:11  
We consider the performance analysis and design optimization of low-density parity check (LDPC) coded multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems for high data rate wireless transmission. The tools of density evolution with mixture Gaussian approximations are used to optimize irregular LDPC codes and to compute minimum operational signal-to-noise ratios (SNRs) for ergodic MIMO OFDM channels. In particular, the optimization is done for various MIMO OFDM system configurations, which include a different number of antennas, different channel models, and different demodulation schemes; the optimized performance is compared with the corresponding channel capacity. It is shown that along with the optimized irregular LDPC codes, a turbo iterative receiver that consists of a soft maximum a posteriori (MAP) demodulator and a belief-propagation LDPC decoder can perform within 1 dB from the ergodic capacity of the MIMO OFDM systems under consideration. It is also shown that compared with the optimal MAP demodulator-based receivers, the receivers employing a low-complexity linear minimum mean-square-error soft-interference-cancellation (LMMSE-SIC) demodulator have a small performance loss (< 1dB) in spatially uncorrelated MIMO channels but suffer extra performance loss in MIMO channels with spatial correlation. Finally, from the LDPC profiles that already are optimized for ergodic channels, we heuristically construct small block-size irregular LDPC codes for outage MIMO OFDM channels; as shown from simulation results, the irregular LDPC codes constructed here are helpful in expediting the convergence of the iterative receivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号