共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
稀土镁合金铸造和挤压态组织及力学性能研究 总被引:3,自引:0,他引:3
制备了3种不同成分的镁-稀土合金,研究稀土(RE)元素铈(Ce)、钕(Nd)和钇(Y)对镁合金铸态组织、力学性能尤其是高温力学性能的影响.采用光学显微镜(OM)、扫描电子显微镜(SEM)及X射线衍射(XRD)仪等对3种镁-稀土合金组织及相组成进行了分析.稀土元素与镁形成的镁-稀土相分别为Mg12Ce、Mg17Ce2、Mg12Nd、Mg24Y5、Mg41Nd5,主要分布在铸态组织晶界.对3种合金的铸态试样进行了室温力学性能及高温力学性能试验,并与挤压态比较,结果显示:在镁合金中,Nd的强化作用优于Ce,在高温时,Nd和Y共同强化作用优于Nd. 相似文献
4.
采用熔炼工艺制备了Mg-2.0Zn-0.2Ca与Mg-2.0Zn-0.2Ca-2Y合金,研究了两种合金的铸态组织及力学性能。结果表明,Y元素的添加细化了Mg-2.0Zn-0.2C合金的铸态组织。Mg-2.0Zn-0.2Ca合金主要由α-Mg与少量Mg7Zn3相组成,添加2wt%的Y后,改变了Zn在Mg基体中的固溶度,降低了其固溶强化效果,同时组织中形成了I相和W相。添加Y元素后,合金的规定塑性延伸强度升高,从41.0 MPa升高到50.6 MPa;伸长率降低,从12.6%降低到4.0%。 相似文献
5.
第二相对Mg-Ca-Sn镁合金铸态组织和力学性能的影响 总被引:1,自引:0,他引:1
研究了含有不同第二相的金属型铸造Mg-Ca-Sn镁合金的显微组织和力学性能。结果表明:在合金中Ca和Sn单独存在可以在一定程度抑制铸态基体晶粒长大,Mg2Ca在晶界或枝晶界处连续分布,Mg2Sn呈颗粒状在晶界和晶内分布。Ca和Sn同时存在时,有CaMgSn在基体上呈半连续的点状或针状,在凝固过程中可作为α-Mg的异质形核核心,与单独添加相比,镁基体的铸态晶粒尺寸显著细化。运用边-边匹配模型分析了CaMgSn化合物与α-Mg之间的异质形核晶体学关系。晶粒细化后的Mg-Ca-Sn镁合金的显微硬度得到明显提高。 相似文献
6.
利用光镜、扫描电镜、XRD和DSC,分析了铸态和热处理态ZK60-xCa合金的组织和相组成,测试了其硬度和室温拉伸性能.结果表明,随着Ca含量的增加,铸态组织逐渐细化,生成Mg6Zn3 Ca2新相,晶界相逐渐增多,且趋于连续网状分布;硬度逐渐提高,而抗拉强度和伸长率逐渐降低.MgZn2相绝大多数固溶于α-Mg基体中,而Mg6 Zn3 Ca2相少量固溶.ZK60和ZK60-1.25Ca合金拉伸性能经648 K固溶后均显著提高,随固溶温度的提高而逐渐降低;经448 K时效后,前者的抗拉和屈服强度有所提高,后者的抗拉强度不变,两者的伸长率均降低. 相似文献
7.
研究了单一稀土铈(Ce)、钇(Y)对航空用铝合金AlZnMeCu铸态枝晶组织和力学性能的影响规律。结果表明,稀土元素能有效细化合金的二次枝晶组织,减小最大共晶化合物尺寸。稀土的加入使合金的时效强度、硬度有所下降,但少量稀土可改善合金的冲击韧性。 相似文献
8.
稀土Y对Mg-2.0Zn-0.3Zr镁合金铸态组织和力学性能的影响 总被引:2,自引:0,他引:2
通过在Mg-2.0Zn-0.3Zr镁合金中添加不同含量的稀土元素Y,研究Y元素及其含量对合金组织和力学性能的影响及机制。结果表明:当Y含量从0.9%增加到1.9%(质量分数,下同)时,组织明显细化,晶间化合物呈连续细网状;当Y含量达到3.7%时,晶间化合物呈不连续的粗网状。当Y从1.9%增加到5.8%时,合金强度逐步提高。Y含量为0.9%时,Y的细化作用及适当的W-相含量对塑性有利,延伸率达到最大值24.8%;Y含量为3.7%时,W-相的数量因X-相的出现而减少,晶间化合物变为不连续网状分布,对塑性有利,合金综合力学性能最佳,抗拉强度为232MPa,屈服强度为124MPa,延伸率为23.5%。添加Y后的Mg-2.0Zn-0.3Zr合金流变应力和挤压变形抗力提高,但可通过420℃,12h热处理和热变形温度提至450℃,改善合金的热成型性并获得更高的综合力学性能。 相似文献
9.
10.
研究了锶(Sr)对AZ91镁合金铸态组织、拉伸性能及显微硬度的影响。结果表明:Sr的加入明显细化了基体合金的铸态组织,当Sr加入量较大时可以抑制Mg17Al12相的析出,并且在晶界上形成层片状的Al4Sr耐热相。加入适量的Sr能显著提高基体合金在175℃高温下的拉伸性能。而且,Sr的加入还能提高合金的显微硬度。 相似文献
12.
通过OM、XRD、SEM和力学性能测试等手段研究了Sn元素对AZ80镁合金铸态组织和力学性能的影响。AZ80-xSn(x=1,3,5wt.%)铸态显微组织呈现出典型的等轴树枝晶形貌,主要有α-Mg,离异共晶Mg17Al12,层片状Mg17Al12,离异共晶Mg2Sn相组成。添加Sn元素可以有效的抑制层片状Mg17Al12相的析出,当Sn添加量为5wt%时,层片状Mg17Al12基本消失。Sn元素添加量少于3wt.%时,具有很好晶粒细化效果。而且,Sn元素具有明显的强化效果,当Sn添加3wt.%时,具有较好的综合力学性能。 相似文献
13.
《稀有金属材料与工程》2013,(8)
研究了Mg-3.8Zn-2.2Ca-xSn(x=0,0.5,1,2,质量分数%)镁合金的铸态组织、抗拉性能和蠕变性能。结果发现:在含Sn合金中会形成CaMgSn相,并且随着Sn含量从0.46%增加到1.88%(质量分数),合金中CaMgSn相的数量增加。同时,合金中Ca2Mg6Zn3相的形貌从最初的连续和/或半连续网状转变为半连续和/或断续状。此外,含Sn合金的晶粒被明显细化,其中含0.90%Sn合金的晶粒最细。与三元合金相比,含0.46%和0.90%Sn合金的抗拉性能和蠕变性能改善明显,而含1.88%Sn合金的屈服强度和蠕变性能虽然得到改善,但其抗拉强度和延伸率减小。在含0.46%、0.90%和1.88%Sn的3个合金中,含0.90%Sn的合金显示了优化的抗拉性能和蠕变性能。 相似文献
14.
《热加工工艺》2016,(8)
在DDL50电子万能试验机上进行Mg-13Gd-4Y-2Zn-0.6Zr稀土镁合金不同温度试样的热拉伸试验,通过扫描电镜分析了试样的宏观断裂组织和微观组织。结果表明:随温度的升高,镁合金抗拉强度降低。在350℃时标准试样σ_b=115 MPa,在400℃时标准试样σ_b=59 MPa。当材料有缺口时,由于形成应力集中,材料的抗拉强度升高。在350℃时缺口R=5 mm试样σ_b=165 MPa,缺口R=20 mm试样σ_b=135 MPa。当温度不同,镁合金的断裂机制也不相同。原始尺寸对拉伸断裂机制也有较大影响。在同一温度下,随缺口半径的减少,断裂由韧性断裂逐步转变为解理断裂。缺口半径越小,应力集中越明显,越易形成脆性断裂。 相似文献
15.
对铸态和变形态AZ80镁合金重熔后的组织演变与力学性能进行比较。将一种新的成形工艺——循环闭式模锻(CCDF)应用于AZ80再结晶局部重熔(RAP)的变形工艺中。相比铸态合金,CCDF变形态可以获得更加细小、均匀、圆整的晶粒组织。随着等温热处理时间从0延长到40min,铸态AZ80合金的晶粒呈现先细化后粗化的趋势,而CCDF变形态则持续粗化。与此同时,前者的圆整度持续增加,而后者则先增后减。重熔过程中的组织演变是多种因素复合的结果,如晶格畸变提供的再结晶驱动能、Ostwald熟化机制以及晶粒合并长大机制等。与铸态相比,CCDF变形态的力学性能明显改善,屈服强度、抗拉强度以及伸长率增幅分别达到89%、45%和242%,这主要得益于组织的细化与缺陷的消除。 相似文献
16.
稀土Er对AZ91镁合金铸态组织的影响 总被引:1,自引:0,他引:1
利用真空电磁感应熔炼炉制备AZ91-XEr(x=0.58%,1.14%,1.81%)镁合金,采用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)及能谱分析仪(EDS)等研究了Er对实验合金显微组织的影响。结果表明:添加Er的合金组织得到细化,当Er含量为1.14%时,合金组织细化最好,平均晶粒尺寸约25μm。实验合金主要由基体α-Mg、β(Mg17Al12)和Al2Er相组成,随Er含量增加,组织中的Al2Er相抑制了β相长大,使β相由主要沿晶界呈不连续岛状分布变为细小块状于组织中弥散分布。 相似文献
17.
铸态AM60-Ti镁合金的显微组织与力学性能 总被引:1,自引:1,他引:1
用光学显微镜、X射线衍射和扫描电镜等手段研究了AM60-xTi合金(x=0,0.2,0.4,0.8)的铸态显微组织,并测定了各试验合金的室温力学性能.试验结果表明,加入少量的Ti可显著细化AM60合金的铸态组织.Ti含量为0.2%时,晶粒细化效果最显著,第二相颗粒细小,分布均匀;AM60合金中的半网状沿晶界分布的β-Mg17Al12相变为颗粒状,并形成弥散分布的颗粒状TiAl3相,合金的抗拉强度和伸长率均达到最高.Ti含量大于0.2%时,Mg17Al12和TiAl3相的尺寸又增大,抗拉强度及伸长率随Ti含量的增加而降低,但均高于AM60合金.Ti加入AM60合金中后,细化合金的晶粒、β相,Ti和Al形成的金属间化合物TiAl3分布于基体和第二相中,起到弥散强化作用,从而提高该合金的力学性能. 相似文献
18.
19.
《热加工工艺》2014,(4)
利用纯镁、锡粒、纯锌和AZ31合金制备Mg-Sn-Al-Zn系合金,通过调整Sn、Al和Zn含量来研究Mg-Sn-Al-Zn系合金的组织和性能,以获得设计合金的成分范围。通过光学显微金相观察、XRD分析以及硬度测试,研究了添加量5wt%~8wt%Sn、2wt%~3wt%Al、1wt%~2wt%Zn的铸态Mg-Sn-Al-Zn系显微组织与力学性能。实验结果表明:Mg-Sn-Al-Zn系合金主要由α-Mg、Mg2Sn相以及较少量的β-Mg17Al12和τ-Mg32(Al,Zn)49相组成,β-Mg17Al12和τ-Mg32(Al,Zn)49相沿枝晶间断续分布。提高Sn含量,可细化枝晶,Sn是影响合金力学性能的主要因素。Al、Zn含量提高时,可提高合金固溶强化效果,而且Al强化效果优于Zn。 相似文献
20.
稀土Gd对Mg-Nd-Zn-Zr镁合金组织和性能的影响 总被引:5,自引:0,他引:5
以Mg-Nd-Zn-Zr合金为基础,通过调整Nd和Zn的含量进行合金成分优化设计,并在新选择的较优成分点通过加入合金化稀土元素Gd,研究了Gd对Mg-Nd-Zn-Zr镁合金铸造组织和力学性能,尤其对高温力学性能的影响.研究发现,Mg-Nd-Zn-Zr镁合金铸态组织由á-Mg基体和Mg12Nd化合物组成.加入合金化稀土元素Gd后,NG31试验镁合金中没有形成三元相,但铸态组织中枝晶问分布的Mg12Nd化合物变得更加细小均匀.经过固溶处理后,Mg-Nd-Zn-Zr试验镁合金铸态组织中枝晶间以及晶界上的化合物完全溶入基体,而NG31试验镁合金在晶界上还有一些颗粒状的化合物.在时效处理时该化合物会以细小弥散的化合物从á-Mg基体中析出.无论Mg-Nd-Zn-Zr镁合金还是NG3l试验镁合金,T6态热处理后都具有优良的室温力学性能,抗拉强度分别达到275 MPa和280 MPa,屈服强度也分别保持在158 MPa和165 MPa.随着Nd含量的增加和Zn含量的降低,Mg-Nd-Zn-Zr镁合金的抗拉强度和屈服强度升高,延伸率也随之增加.随着Gd的加入,抗拉强度和屈服强度升高,而延伸率却有所下降.同时,在所有的测试温区内NG31的高温瞬时抗拉强度和屈服强度都高于Mg-Nd-Zn-Zr试验镁合金.NG31试验合金在250℃的抗拉强度仍然保持在215 MPa,屈服强度仍能够达到155 MPa,甚至还高于200℃时的屈服强度(141 MPa). 相似文献