首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在挤压前分别对AZ80镁合金进行了常规均匀化处理和复合均匀化处理,并进行了挤压态AZ80镁合金的显微组织、力学性能和耐腐蚀性能的测试与分析。结果表明,与常规均匀化处理相比,复合均匀化处理能显著提高挤压态AZ80镁合金的力学性能和耐腐蚀性能,25℃的抗拉强度增加75 MPa、屈服强度增加87 MPa、断后伸长率增加10.9%;腐蚀电位正移309 mV。  相似文献   

2.
杨连福 《铸造技术》2014,(10):2268-2270
通过对AZ91镁合金进行不同工艺的固溶处理和时效处理,研究了热处理工艺对AZ91镁合金显微组织、力学性能和耐腐蚀性能的影响。结果表明,固溶和时效处理可以明显提高AZ91镁合金的力学性能和耐腐蚀性能。分级固溶处理可使AZ91镁合金的抗拉强度提高27 MPa,-20℃冲击吸收功增加10 J,腐蚀电位正移196 mV。  相似文献   

3.
在AZ80镁合金中添加合金元素Sr和In,制备了AZ80-0.2Sr-0.15In锻造镁合金,并对其进行了5道次多向锻造。对锻后显微组织、织构、室温和高温力学性能、以及耐腐蚀性能进行了测试与分析。结果表明,采用5道次多向锻造制备的合金平均晶粒尺寸为4.6μm,具有优异的室温和高温力学性能、耐腐蚀性能。与商用铸态AZ80镁合金相比,(0002)基面织构最大值减小73%,350℃抗拉强度提高329%、屈服强度提高532%;腐蚀电位正移203 m V。  相似文献   

4.
在熔炼和浇注过程中采用超声振动辅助搅拌的复合铸造工艺,进行了机床用新型镁合金Mg-3Al-1Zn-1.5Sr-0.15Sc-0.15V的制备,并进行了显微组织、物相组成、耐腐蚀性能和不同温度下的高温力学性能的测试与分析。结果表明,该新型镁合金由α-Mg、Mg17Al12和Mg17Sr2组成;与商用AZ31镁合金相比,其高温力学性能和耐腐蚀性能得到显著提高,其中腐蚀电位正移276 m V,150℃屈服强度和抗拉强度分别增加66%、39%,500℃屈服强度和抗拉强度分别增加686%、294%。  相似文献   

5.
制备了机械轻量化用新型镁基合金Mg-2Zn-0.3V-0.1Ti-0.1Sc,并进行了显微组织、物相组成、力学性能和耐腐蚀性能的分析。结果表明,该新型镁基合金由α-Mg基体和Mg Zn相组成,具有较佳的力学性能和耐腐蚀性,室温抗拉强度392MPa、屈服强度218MPa、伸长率22.1%,腐蚀电位较商用AZ31镁合金正移294m V。  相似文献   

6.
在镁基材料中同时添加两种粒径的Si C作为增强体,采用分段球磨法进行了Si C改性新型镁基材料的制备,并进行了显微组织、物相组成、力学性能和耐腐蚀性能的测试。结果表明:该新型镁基材料由Mg相和Si C相组成;在20、150、350℃的抗拉强度分别为586、579、568MPa,屈服强度分别为508、501、494 MPa;与商用AZ31镁合金相比,其腐蚀电位正移了296m V。  相似文献   

7.
采用不同的挤压工艺进行了汽车散热器用Mn E21镁合金板材试样的成形,并进行了试样力学性能和耐腐蚀性能的测试与分析。结果表明:与常规挤压相比,I-ECAP挤压可以提高试样力学性能和耐腐蚀性能。Mn E21镁合金板材成形优选I-ECAP挤压工艺。与常规挤压优化工艺相比,I-ECAP挤压能增大抗拉强度12 MPa、屈服强度9 MPa、腐蚀电位正移22 m V。  相似文献   

8.
为了提高A356铝合金汽车轮辋的力学性能和耐腐蚀性能,本文采用不同的工艺对A356铝合金汽车轮辋进行了热处理,并进行了拉伸、冲击和腐蚀试验。结果表明:与常规热处理相比,采用分级淬火或者分级时效,尤其是复合使用分级淬火和分级时效可显著提高汽车轮辋的力学性能和耐腐蚀性能;采用分级淬火+分级时效轮辋的抗拉强度增加54 MPa、屈服强度增加74 MPa,断后伸长率增加7.8%,冲击韧性增加16.9 J/cm~2,腐蚀电位正移407 mV。  相似文献   

9.
进行了Mg-Al-Zn-Ti合金的自动控制低压铸造试验,并测试了显微组织、力学性能和耐腐蚀性能。结果表明:和商用AZ91镁合金相比,自动控制低压铸造Mg-Al-Zn-Ti合金的抗拉强度和屈服强度分别增大13%、23%;腐蚀电位正移0.087 V,Mg-Al-Zn-Ti合金的力学性能和耐腐蚀性能得到显著提升。  相似文献   

10.
采用不同工艺参数对食品机械用AZ80镁合金挤压薄壁件进行脉冲电流辅助热处理,并进行了显微组织、力学性能和耐腐蚀性能的测试与对比分析。结果表明,在脉冲电流优选为1100 A的情况下,该合金薄壁件中Mg17Al12相呈弥散的颗粒状分布,显著提高合金的力学性能和耐腐蚀性能;与常规热处理相比,该热处理工艺可使合金的抗拉强度增加61 N/mm2、屈服强度增加65 N/mm2、断后伸长率增加4.1%、腐蚀电位正移138 m V、腐蚀电流密度减小14.9%。  相似文献   

11.
测试和分析了汽车用Mg-6Al-3Sn-1Mn高强镁合金的性能。结果表明:镁合金的强度随挤压温度和挤压比的增加先增大后减小,而伸长率反之,腐蚀电位随挤压温度和挤压比的增加先正移后负移。380℃挤压温度下的抗拉强度和屈服强度比320℃挤压温度的分别增大了11.26%、15.89%,腐蚀电位正移了51 mV。与挤压比14相比,挤压比22下的抗拉强度和屈服强度分别增大了10.16%、14.81%,腐蚀电位正移了46 mV,耐腐蚀性能先提升后下降。汽车用Mg-6Al-3Sn-1Mn高强镁合金的挤压工艺参数优选为:挤压温度380℃、挤压比22。  相似文献   

12.
采用机械振动辅助铸造法制备了新型镁合金Mg-9Al-1Zn-0.1Y-0.8纳米Cr,并通过OM、SEM和XRD分析,以及杨氏模量、拉伸性能和耐腐蚀性能的测试发现:机械振动辅助铸造法制备的该新型镁合金具有较佳的刚度、拉伸性能和耐腐蚀性能,在机械设备减重上具有较好的应用价值。与商用AZ91D镁合金相比,该新型镁合金的杨氏模量增加41.7%、抗拉强度增加38.9%、屈服强度增加36.1%、断后伸长率基本不变、腐蚀电位正移224 mV。  相似文献   

13.
《热加工工艺》2021,50(7):92-96
采用不同的浇注温度和比压对AZ31镁合金汽车轮毂进行了液态模锻成形,并进行了显微组织、耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随比压和浇注温度的增加,轮毂试样的平均晶粒尺寸和磨损体积均先减小后增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升后下降。与30 MPa比压相比较,50 MPa比压时试样的平均晶粒尺寸和磨损体积分别减小了27.39%、41.67%,腐蚀电位正移了36 m V。与680℃浇注温度相比,700℃浇注时试样的平均晶粒尺寸和磨损体积分别减小了33.33%、47.5%,腐蚀电位正移了47 m V。AZ31镁合金汽车轮毂的液态模锻工艺参数优选为:50 MPa比压、700℃浇注温度。  相似文献   

14.
本文介绍了AZ31镁合金镀Ti/TiN双层膜工艺,分析了膜层形貌,并对AZ31与镀膜样品进行了摩擦磨损和腐蚀试验。结果表明:在摩擦磨损试验中,AZ31的平均摩擦系数是0.3066,磨损失重率为0.25‰;而镀Ti/TiN膜的AZ31的平均摩擦系数仅为0.1849,磨损失重率仅为0.08‰,说明镀Ti/TiN膜的AZ31获得优良的耐磨性能。在动力学扫描极化试验中,镀Ti/TiN膜的AZ31的腐蚀电位是-20 mV,腐蚀电流是4.26×10-6mA/cm2,腐蚀速率是1.97×10-2mm/a;而AZ31的腐蚀电位是-250 mV,腐蚀电流是10.8257 mA/cm2,腐蚀速率是499.4435 mm/a,腐蚀电位向正方向转移230 mV,腐蚀电流、腐蚀速率极大减少。AZ31镁合金镀Ti/TiN膜极大地提高了镁合金的耐腐蚀性能。  相似文献   

15.
镁合金的耐腐蚀性能不理想,从而严重阻碍了镁合金大规模的商业应用。在商用AZ31镁合金表面制备了植酸转换膜,采用扫描电镜、能谱仪、电化学工作站等进行了合金电化学腐蚀性能的检测。结果表明,表面制备的植酸转换膜显著改善了商用AZ31镁合金的电化学腐蚀性能;与未经表面处理的商用AZ31镁合金相比,制备了植酸转换膜的AZ31镁合金在20℃电解液中的开路电位和腐蚀电位分别正移185 m V、238 m V;在质量分数为5%的KOH电解液中的开路电位和腐蚀电位分别正移221 m V、218 m V。  相似文献   

16.
采用常规铸造和差压铸造工艺分别制备了汽车发动机壳体用AZ91D镁合金,研究了两种铸造方式对该合金电化学腐蚀行为的影响。通过显微组织分析、不同电解液中的电化学腐蚀行为以及差压铸造镁合金的电化学阻抗谱的研究表明,与常规铸造相比,差压铸造明显提高了AZ91D镁合金的耐腐蚀性能;在w(NaCl)=5%的NaCl和w(KOH)=5%的KOH电解液中的开路电位分别正移176 mV、184 mV,腐蚀电位分别正移152 mV、277 mV。  相似文献   

17.
对差压铸造的汽车用高强镁合金Mg-8.5Al-0.8Zn-0.8Ce-0.5Zr的力学性能和耐腐蚀性能进行了测试和分析。结果表明:随浇注温度、充型压力和充型速度的增加,抗拉强度和屈服强度先增大后减小,断后伸长率先减小后增大,腐蚀电位先正移后负移,耐腐蚀性能先提升后下降。高强镁合金Mg-8.5Al-0.8Zn-0.8Ce-0.5Zr的差压铸造工艺参数优选为:690℃浇注温度、30 kPa充型压力、60 mm/s充型速度。在此工艺下,试样的抗拉强度、屈服强度分别为334、248MPa,断后伸长率为8.1%,腐蚀电位为-0.834 V。  相似文献   

18.
为了改善铸态AZ80镁合金组织和性能,对均匀化处理的铸态AZ80镁合金进行了多向锻造试验,并采用金相分析、EBSD(电子背散射衍射)分析和拉伸试验等方法,进行了显微组织和力学性能的测试与分析.结果表明:与锻造前相比,多向锻造后的AZ80镁合金的平均晶粒尺寸减小了约76 μm、抗拉强度增加了66 MPa、屈服强度增加了7...  相似文献   

19.
曹辉  杜恭贺 《机床与液压》2020,48(22):59-63
对Mg-9Al-1Zn-05Ce汽车新型压铸零部件试样进行了压铸成型,并进行了力学性能和耐腐蚀性能的测试和分析。结果表明:随浇注温度的升高和压射速度的加快,试样的抗拉强度、屈服强度先增大后减小,腐蚀电位正移后逐渐负移,伸长率变化幅度较小,力学性能和耐腐蚀性能均先提升后下降;与620 ℃浇注温度压铸时相比,650 ℃浇注温度下的抗拉强度、屈服强度分别增大了1308%、2378%,断后伸长率减小了1%,腐蚀电位正移了43 mV;与1 m/s压射速度压铸时相比,3 m/s压铸下的抗拉强度、屈服强度分别增大了1120%、1645%,断后伸长率减小了08%,腐蚀电位正移了31 mV。Mg-9Al-1Zn-05Ce汽车新型压铸零部件的压铸工艺参数优选为:650 ℃始锻温度、3 m/s压射速度。  相似文献   

20.
AZ31镁合金表面磷化工艺研究   总被引:8,自引:6,他引:8  
王洁  丁毅  徐蔚  王玲玲 《表面技术》2006,35(2):55-56
研究了AZ31镁合金表面的磷化处理工艺,分析了磷化时间和封孔处理对镁合金表面磷化膜耐腐蚀性能的影响,并利用金相显微表面分析、腐蚀电位及极化曲线测量、腐蚀失重试验等方法评价了磷化膜的耐腐蚀性能.研究结果表明,磷化处理可以显著改善AZ31镁合金的耐腐蚀性能,并且随着磷化时间的增加,镁合金表面磷化膜的耐腐蚀性能不断得到提高;封孔处理可以有效地封闭镁合金表面磷化膜中残留的腐蚀活性通道,进一步提高镁合金表面磷化膜的耐腐蚀性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号