In this paper, a novel compact semi-circular slot (SCS) 2 × 2 MIMO antenna is presented for 5G NR sub-6 GHz applications with high isolation. The proposed antenna consists of a semi-circular slot in ground plane, U-shaped stub, and 50-ohm microstrip feed line. The novelty of this paper are the Semi-Circular Slot acts a radiator, the port isolation is enhanced using a simple conductor strip as a neutralization line, very compact in size, low ECC, and good impedance matching. The overall size of the proposed SCS MIMO antenna is 16 mm x 21 mm, and FR4 substrate is used with thickness of 1.6 mm. The two SCS antenna elements are separated by edge-to-edge distance of 1mm (\(=0.019\lambda _{0}\)). The proposed compact MIMO antenna design is simulated using Ansys HFSS. To validate SCS MIMO antenna, a prototype was fabricated and tested. The measured results are attained at 5.5 GHz with isolation greater than 25dB, impedance bandwidth (S11\(<-10\) dB) covers from 5.10 GHz to 5.80 GHz with return loss of ? 39.5 dB. The MIMO antenna parameters, ECC, CCL, TARC, and MEG are studied, and the values are obtained within acceptable limits. The measured and simulated antenna results are almost similar. This compact MIMO antenna is suitable for 5G communications in sub-6 GHz wifi-5 band applications.
相似文献In this paper, two element multiple input–multiple output (MIMO) meander line antenna systems with improved isolation performance and compact size are proposed and fabricated in WLAN frequency band. To increase isolation among antenna elements, a novel metamaterial spiral S-shaped resonator is embedded between two radiating elements. The proposed resonator has planar configuration and miniaturized size and is capable of blocking electromagnetic propagation between antenna elements by exhibiting negative effective permeability in the desired frequency band. To illustrate and evaluate the design process, two design samples are fabricated and tested in WLAN frequency band and the agreement among measurement and simulation results approves the design method. In the frequency range of 2.38–2.48 GHz, some MIMO communication system requirements like total active reflection coefficient, envelope correlation coefficient and capacity loss are tested on design samples which show satisfactory results, so this method can be employed in designing array antennas for small mobile communication systems. The designed MIMO antenna systems separated by 13.8 mm (less than λ/9), has better than ??40 dB isolation coefficient and near zero correlation coefficient and capacity loss at the operating frequency (2.4 GHz).
相似文献A very compact Superwideband multiple-input–multiple-output antenna with dual notched band characteristics is presented. Superwideband characteristics is obtained by means of radiating patch and high isolation between two input ports are obtained by using T-shaped stub in ground plane. Two rejection bands (wireless interoperability for microwave access (WiMAX)/C-band and wireless local area network) are obtained by etching two elliptical slots on radiating patch. Antenna offers large measured useable bandwidth of 2.60–20.04 GHz. Diversity performance is studied in terms of envelope correlation coefficient, diversity gain and total active reflection coefficient. Antenna also offers desirable radiation pattern, gain and radiation efficiency which makes proposed antenna quite suitable for different wireless applications.
相似文献A simple method is proposed for enhancement in bandwidth and gain of the self complementary Bowtie antenna. This method overcomes the use of complicated fractal structures to increase the bandwidth and gain of the Bowtie antenna. Using this simple method, by making variation of the single dimension of the antenna structure, the bandwidth is improved by 21% and return loss S11 is also improved of whole of the band of interest. The major importance of this simple technique is that it can be applied to any rectangular microstrip antenna. The resonance frequencies and bandwidths can also be steered within the limited ranges also.
相似文献Near field communication, development in radio frequency detection has put its foot in today’s life of individuals through sophisticated mobile phones. NFC technology has become very popular due to its transparent and simple integration with a number of applications such as health care, consumer electronics, public transport payment methods, etc. A few new approaches have been attempted to make NFC progressively competent in routine day-to-day applications. This paper discusses the latest development in the use of NFC’s in a few implementations and the potential outcomes of the hustle-free implementation of these applications. A systematic analysis of recent research deployment in different areas of use has been clarified and explored.
相似文献