首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wireless Personal Communications - In this paper the design and experimental characterization of a coplanar waveguide-feed planar inverted F antenna for wearable personal communications are...  相似文献   

2.
In recent decades, flexible and wearable devices have been extensively investigated due to their promising applications in portable mobile electronics and human motion monitoring. MXene, a novel growing family of 2D nanomaterials, demonstrates superiorities such as outstanding electrical conductivity, abundant terminal groups, unique layered-structure, large surface area, and hydrophilicity, making it to be a potential candidate material for flexible and wearable devices. Numerous pioneering works are devoted to develop flexible MXene-based composites with various functions and designed structures. Therefore, the latest progress of the flexible MXene-based composites for wearable devices is summarized in this review, focusing on the preparation strategies, working mechanisms, performances, and applications in sensors, supercapacitors, and electromagnetic interference shielding materials. Moreover, the current challenges and future outlooks are also discussed.  相似文献   

3.
The interfacing of soft and hard electronics is a key challenge for flexible hybrid electronics. Currently, a multisubstrate approach is employed, where soft and hard devices are fabricated or assembled on separate substrates, and bonded or interfaced using connectors; this hinders the flexibility of the device and is prone to interconnect issues. Here, a single substrate interfacing approach is reported, where soft devices, i.e., sensors, are directly printed on Kapton polyimide substrates that are widely used for fabricating flexible printed circuit boards (FPCBs). Utilizing a process flow compatible with the FPCB assembly process, a wearable sensor patch is fabricated composed of inkjet‐printed gold electrocardiography (ECG) electrodes and a stencil‐printed nickel oxide thermistor. The ECG electrodes provide 1 mVpp ECG signal at 4.7 cm electrode spacing and the thermistor is highly sensitive at normal body temperatures, and demonstrates temperature coefficient, α ≈ –5.84% K–1 and material constant, β ≈ 4330 K. This sensor platform can be extended to a more sophisticated multisensor platform where sensors fabricated using solution processable functional inks can be interfaced to hard electronics for health and performance monitoring, as well as internet of things applications.  相似文献   

4.
Emerging Wearable Sensors for Plant Health Monitoring   总被引:1,自引:0,他引:1  
Emerging plant diseases, caused by pathogens, pests, and climate change, are critical threats to not only the natural ecosystem but also human life. To mitigate crop loss due to various biotic and abiotic stresses, new sensor technologies to monitor plant health, predict, and track plant diseases in real time are desired. Wearable electronics have recently been developed for human health monitoring. However, the application of wearable electronics to agriculture and plant science is in its infancy. Wearable technologies mean that the sensors will be directly placed on the surfaces of plant organs such as leaves and stems. The sensors are designed to detect the status of plant health by profiling various trait biomarkers and microenvironmental parameters, transducing bio-signals to electric readout for data analytics. In this perspective, the recent progress in wearable plant sensors is summarized and they are categorized by the functionality, namely plant growth sensors, physiology, and microclimate sensors, chemical sensors, and multifunctional sensors. The design and mechanism of each type of wearable sensors are discussed and their applications to address the current challenges of precision agriculture are highlighted. Finally, challenges and perspectives for the future development of wearable plant sensors are presented.  相似文献   

5.
Wireless Personal Communications - The medical field has witnessed an exponential growth of wearable devices mainly due to the advancement in wireless communication and antenna technology. There is...  相似文献   

6.
Cardiovascular disease is the leading cause of death and has dramatically increased in recent years. Continuous cardiac monitoring is particularly important for early diagnosis and prevention, and flexible and stretchable electronic devices have emerged as effective tools for this purpose. Their thin, soft, and deformable features allow intimate and long‐term integration with biotissues, which enables continuous, high‐fidelity, and sometimes large‐area cardiac monitoring on the skin and/or heart surface. In addition to monitoring, intimate contact is also crucial for high‐precision therapies. Combined with tissue engineering, soft bioelectronics have also demonstrated the capability to repair damaged cardiac tissues. This review highlights the recent advances in wearable and implantable devices based on flexible and stretchable electronics for cardiovascular monitoring and therapy. First, wearable/implantable soft bioelectronics for cardiovascular monitoring (e.g., the electrocardiogram, blood pressure, and oxygen saturation level) are reviewed. Then, advances in cardiovascular therapy based on soft bioelectronics (e.g., mesh pacing, ablation, robotic sleeves, and electronic stents) are discussed. Finally, device‐assisted tissue engineering therapy (e.g., functional electronic scaffolds and in vitro cardiac platforms) is discussed.  相似文献   

7.
Wireless Personal Communications - The electrocardiogram is the most convenient and widely used method of cardiac monitoring. The information provided by an ECG, has the potential to be used as a...  相似文献   

8.
A two-element dual-band flexible multiin multi-out antenna which can be used for wearable applications is proposed in this paper. The antenna consists of two radiating elements fed by coplanar waveguide, and a shielding layer, which are all made of flexible conductive cloth MKKTN260. Each radiating element is composed of two coupled split ring-shaped bending strips. The proposed antenna shows two measured impedance bandwidth(S11<-10 dB) of 2.39–2.48 GHz and 5.72–5.88GHz, so that it...  相似文献   

9.
10.
11.
A highly flexible, stretchable, and mechanically robust low‐cost soft composite consisting of silicone polymers and water (or hydrogels) is reported. When combined with conventional acoustic transducers, the materials reported enable high performance real‐time monitoring of heart and respiratory patterns over layers of clothing (or furry skin of animals) without the need for direct contact with the skin. The approach enables an entirely new method of fabrication that involves encapsulation of water and hydrogels with silicones and exploits the ability of sound waves to travel through the body. The system proposed outperforms commercial, metal‐based stethoscopes for the auscultation of the heart when worn over clothing and is less susceptible to motion artefacts. The system both with human and furry animal subjects (i.e., dogs), primarily focusing on monitoring the heart, is tested; however, initial results on monitoring breathing are also presented. This work is especially important because it is the first demonstration of a stretchable sensor that is suitable for use with furry animals and does not require shaving of the animal for data acquisition.  相似文献   

12.
吴金奖  陈建新  田峰 《信号处理》2014,30(11):1388-1393
心电图(ECG)是心脏疾病诊断最有效的工具。噪声的去除和Q波、R波、S波的提取是心电信号检测中的两大主题。本文使用Savitzky-Golay滤波器对人体在弯腰、走路、坐下-站起等运动状态下采集的心电信号进行分析,去除信号中的基线漂移和运动伪影,并对滤波后信号的Q波、R波和S波进行检测。通过将本文提出的滤波方式与卡尔曼滤波、小波分解就时间复杂度和功率谱密度两个参数进行对比分析,评估Savitzky-Golay滤波器在心电信号中运动伪影去除的优势。实验结果表明,Savitzky-Golay滤波器能更加有效地适应心电信号的变化,有效地去除心电信号中的噪声,并且最大限度保持心电波形的形状和波峰。   相似文献   

13.
The next-generation wearable biosensors with highly biocompatible, stretchable, and robust features are expected to enable the change of the current reactive and disease-centric healthcare system to a personalized model with a focus on disease prevention and health promotion. Herein, a muscle-fiber-inspired nonwoven piezoelectric textile with tunable mechanical properties for wearable physiological monitoring is developed. To mimic the muscle fibers, polydopamine (PDA) is dispersed into the electrospun barium titanate/polyvinylidene fluoride (BTO/PVDF) nanofibers to enhance the interfacial-adhesion, mechanical strength, and piezoelectric properties. Such improvements are both experimentally observed via mechanical characterization and theoretically verified by the phase-field simulation. Taking the PDA@BTO/PVDF nanofibers as the building blocks, a nonwoven light-weight piezoelectric textile is fabricated, which hold an outstanding sensitivity (3.95 V N−1) and long-term stability (<3% decline after 7,400 cycles). The piezoelectric textile demonstrates multiple potential applications, including pulse wave measurement, human motion monitoring, and active voice recognition. By creatively mimicking the muscle fibers, this work paves a cost-effective way to develop high-performance and self-powered wearable bioelectronics for personalized healthcare.  相似文献   

14.
阻塞型睡眠呼吸暂停综合征(OSAS)是常见的睡眠类疾病,为满足居家对OSAS进行初步筛查和诊断,该文设计了基于聚偏氟乙烯(PVDF)压电薄膜的鼾声监测系统。可穿戴式的鼾声监测系统包含高灵敏度鼾声传感器、低噪声信号调理电路、嵌入式系统及上位机系统。根据鼾声段和非鼾声段能量差异大的特点,基于短时能量法进行鼾声端点检测算法设计,通过采集的鼾声信号进行算法验证。经测试,系统采集的鼾声信号信噪比高,端点检测平均误差小于0.032 s,准确率达92.6%,满足潜在OSAS患者的筛查要求以及进行康复训练的自我检查,同时可减轻患者筛查和医学多导睡眠图(PSG)检测的负担。  相似文献   

15.
Exploiting interfacial excess (Γ), Laplace pressure jump (ΔP), surface work, and coupling them to surface reactivity have led to the synthesis of undercooled metal particles. Metastability is maintained by a core–shell particle architecture. Fracture of the thin shell leads to solidification with concomitant sintering. Applying Scherer's constitutive model for load‐driven viscous sintering on the undercooled particles implies that they can form conductive traces. Combining metastability to eliminate heat and robustness of viscous sintering, an array of conductive metallic traces can be prepared, leading to plethora of devices on various flexible and/or heat sensitive substrates. Besides mechanical sintering, chemical sintering can be performed, which negates the need of either heat or load. In the latter, connectivity is hypothesized to occur via a Frenkel's theory of sintering type mechanism. This work reports heat‐free, ambient fabrication of metallic conductive interconnects and traces on all types of substrates.  相似文献   

16.
This work demonstrates a stretchable and flexible lactate/O2 biofuel cell (BFC) using buckypaper (BP) composed of multi‐walled carbon nanotubes as the electrode material. Free‐standing BP, functionalized with a pyrene‐polynorbornene homopolymer, is fabricated as the immobilization matrix for lactate oxidase (LOx) at the anode and bilirubin oxidase at the cathode. This biofuel cell delivers an open circuit voltage of 0.74 V and a high‐power density of 520 µW cm?2. The functionalized BP electrodes are assembled onto a stretchable screen‐printed current collector with an “island–bridge” configuration, which ensures conformal contact between the wearable BFC and the human body and endows the BFC with excellent performance stability under stretching condition. When applied to the arm of the volunteer, the BFC can generate a maximum power of 450 µW. When connected with a voltage booster, the on‐body BFC is able to power a light emitting diode under both pulse discharge and continuous discharge modes during exercise. This demonstrates the promising potential of the flexible BP‐based BFC as a self‐sustained power source for next‐generation wearable electronics.  相似文献   

17.
Functional electrical devices have promising potentials in structural health monitoring system, human‐friendly wearable interactive system, smart robotics, and even future multifunctional intelligent room. Here, a low‐cost fabrication strategy to efficiently construct highly sensitive graphite‐based strain sensors by pencil‐trace drawn on flexible printing papers is reported. The strain sensors can be operated at only two batteries voltage of 3 V, and can be applied to variously monitoring microstructural changes and human motions with fast response/relaxation times of 110 ms, a high gauge factor (GF) of 536.6, and high stability >10 000 bending–unbending cycles. Through investigation of service behaviors of the sensors, it is found that the microcracks occur on the surface of the pencil‐trace and have a major influence on the functions of the strain sensors. These performances of the strain sensor attain and even surpass the properties of recent strain sensing devices with subtle design of materials and device architectures. The pen‐on‐paper (PoP) approach may further develop portable, environmentally friendly, and economical lab‐on‐paper applications and offer a valuable method to fabricate other multifunctional devices.  相似文献   

18.
Flexible strain sensors with high sensitivity and high mechanical robustness are highly desirable for their accurate and long-term reliable service in wearable human-machine interfaces. However, the current application of flexible strain sensors has to face a trade-off between high sensitivity and high mechanical robustness. The most representative examples are micro/nano crack-based sensors and serpentine meander-based sensors. The former one typically shows high sensitivity but limited robustness, while the latter is on the contrary. Herein, ultra-robust and sensitive flexible strain sensors are developed by crack-like pathway customization and ingenious modulation of low/high-resistance regions on a serpentine meander structure. The sensors show high cyclic stability (10 000 cycles), strong tolerance to harsh environments, high gauge factor (>1000) comparable with that of the crack-based sensor, and fast response time (<58 ms). Finally, the sensors are integrated into a wearable sign language translation system, which is wireless, low-cost, and lightweight. Recognition rates of over 98% are demonstrated for the translation of 21 sign languages with the assistance of machine learning. This system facilitates achieving barrier-free communication between signers and nonsigners and offers broad application prospects in gesture interaction.  相似文献   

19.
Highly flexible organic nanofiber phototransistors are fabricated on a highly flexible poly(ethylene terephthalate) (PET) textile/poly(dimethylsiloxane) (PDMS) composite substrate. Organic nanofibers are obtained by electrospinning, using a mixture of poly(3,3″′‐didodecylquarterthiophene) (PQT‐12) and poly(ethylene oxide) (PEO) as the semiconducting polymer and processing aid, respectively. PDMS is used as both a buffer layer for flattening the PET textile and a dielectric layer in the bottom‐gate bottom‐contact device configuration. PQT‐12:PEO nanofibers can be well‐aligned on the textile composite substrate by electrospinning onto a rotating drum collector. The nanofiber phototransistors fabricated on the PET/PDMS textile composite substrate show highly stable device performance (on‐current retention up to 82.3 (±6.7)%) under extreme bending conditions, with a bending radius down to 0.75 mm and repeated tests over 1000 cycles, while those prepared on film‐type PET and PDMS‐only substrates exhibit much poorer performances. The photoresponsive behaviors of PQT‐12:PEO nanofiber phototransistors have been investigated under light irradiation with different wavelengths. The maximum photoresponsivity, photocurrent/dark‐current ratio, and external quantum efficiency under blue light illumination were 930 mA W?1, 2.76, and 246%, respectively. Furthermore, highly flexible 10 × 10 photosensor arrays have been fabricated which are able to detect incident photonic signals with high resolution. The flexible photosensors described herein have high potential for applications as wearable photosensors.  相似文献   

20.
In this paper, a review of the authors' work on inkjet-printed flexible antennas, fabricated on paper substrates, is given. This is presented as a system-level solution for ultra-low-cost mass production of UHF radio-frequency identification (RFID) tags and wireless sensor nodes (WSN), in an approach that could be easily extended to other microwave and wireless applications. First, we discuss the benefits of using paper as a substrate for high-frequency applications, reporting its very good electrical/dielectric performance up to at least 1 GHz. The RF characteristics of the paper-based substrate are studied by using a microstrip-ring resonator, in order to characterize the dielectric properties (dielectric constant and loss tangent). We then give details about the inkjet-printing technology, including the characterization of the conductive ink, which consists of nano-silver particles. We highlight the importance of this technology as a fast and simple fabrication technique, especially on flexible organic (e.g., LCP) or paper-based substrates. A compact inkjet-printed UHF ldquopassive RFIDrdquo antenna, using the classic T-match approach and designed to match the IC's complex impedance, is presented as a demonstration prototype for this technology. In addition, we briefly touch upon the state-of-the-art area of fully-integrated wireless sensor modules on paper. We show the first-ever two-dimensional sensor integration with an RFID tag module on paper, as well as the possibility of a three-dimensional multilayer paper-based RF/microwave structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号