首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the design of a miniaturized broadband monopole antenna for 5G and Wireless Local Area Network (WLAN) applications in mobile handsets. The proposed monopole evolved from a rectangular geometry of size 12 × 5 mm. The slot and stub loading techniques are used to improve the impedance matching offered by the antenna. Furthermore, bandwidth broadening is achieved using lumped elements loaded onto the aperture of the antenna. The proposed miniaturized antenna exhibits a measured impedance bandwidth of 63.6% (3.0–5.8 GHz) covering the 5G spectrum allocations under sub-6 GHz and the WLAN services. The antenna elements are replicated along the sides of the mock mobile handset PCB to study the functionality of the eight-element MIMO antenna. The prototype MIMO antenna fabricated and tested in the laboratory offers a peak gain of 3 dBi and total efficiency greater than 72%. Owing to miniaturization, the spatial distribution of the antenna element provides a low envelope correlation (ECC) of less than 0.2 and good diversity gain (DG) greater than 7.8 dB. In addition, the mean effective gain (MEG), channel capacity loss (CCL), multiplexing efficiency (ME), and total active reflection coefficient (TARC) are evaluated and presented. The estimated MIMO metrics are within the desired range of operation and hence make the antenna suitable for a complex propagation environment. The prototype antenna is developed on a thin microwave laminate with low-loss characteristics and tested under laboratory conditions. The outcomes indicate that the proposed eight-element antenna can be applied to 5G MIMO communications.  相似文献   

2.
一种小型化超宽带MIMO天线设计   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种基于槽天线的小型化、高隔离度的超宽带(Ultra Wideband, UWB)多入多出(Multiple-Input Multiple-Output, MIMO)天线.该MIMO天线由两个槽天线单元构成, 为了增加天线阻抗带宽, 每个槽天线单元由末端带有圆形贴片的微带线和末端为圆形的槽线两部分耦合馈电.采用在地板上开槽和方向图分集方法, 减少地板表面波和空中电磁波影响, 达到提高天线隔离度的目的.数值仿真和实验结果表明:该天线在3.1~11 GHz频段内满足端口反射系数|S11| < -10 dB, 隔离度|S12|在7~11 GHz频段内小于-25 dB, 在3.1~7 GHz频段内小于-16 dB, 并根据仿真和测试S参数计算了包络相关系数.  相似文献   

3.
A small size neutralization line integrated flower-shaped MIMO antenna is designed and analyzed for sub-6 GHz type 5G NR frequency bands like n79 (4400–5000 MHz), n78 (3300–3800 MHz), n77 (3300–4200 MHz), and WLAN (5150–5825 MHz) applications. The novel approach of theory of characteristic mode analysis (TCMA) is introduced to provide physical insight of the designed structure and its characteristics behavior. Due to the suggested modifications in the geometry, the isolation among the patches is greatly increased. The overall miniaturized dimension of the MIMO antenna is 25 × 40 mm2. The edge-edge spacing among the elements is 0.0233λ. The prototype antenna is fabricated and measured that shows good agreement compared with simulated results. The designed MIMO antenna without the presence of decoupling structure offers an isolation of 28 dB, gain of 3.6 dBi, and radiation efficiency of 69.7% at the resonant frequency. The proposed MIMO antenna covers a broad range of frequency band from 3.296 to 5.962 GHz with −10 dB impedance bandwidth of 2666 MHz and maintains a good isolation of greater than 50 dB for the entire operating band. The tested radiation efficiency and gain are 85.3% and 6.22 dBi at 3.5 GHz. Moreover, the diversity parameters of the neutralization line integrated MIMO antenna, that is, channel capacity loss (CCL) isolation, mean effective gain (MEG), total active reflection coefficient (TARC) diversity gain (DG), and envelope correlation coefficient (ECC), are analyzed and discussed in this article.  相似文献   

4.
为了更好地实现移动终端天线小型化,提出了一种具有较高单元间隔离度的紧凑型超宽带(multiple input multiple output,MIMO)天线。该天线无需任何解耦网络,通过阶梯形缝隙结构来实现各个天线单元。采用的阶梯形缝隙天线不仅减少了天线的尺寸,而且具有定向辐射行为,从而形成较高的高隔离度。提出的天线尺寸为23×23mm3。测量结果表明,提出的超宽带MIMO天线在3 GHz-10.9 GHz频谱中能够产生较好的多向辐射特性(S11≤-10dB),阻抗隔离大于20dB,包络相关系数和信道容量损耗的容许界限保证了良好的MIMO性能。  相似文献   

5.
This research suggests a compact uniplanar multiple-input multiple-output (MIMO) with four ports for n79/n46/millimeter-wave (mm-wave) applications. The size of the quad MIMO is only 30 × 30 × 0.8 mm3. MIMO system consists of four identical Z-shaped radiators and common ground on the same plane and no decoupling structures are used for isolation. The system covers the bandwidth of 1.9 GHz (4.4–6.3 GHz) with a mid-frequency of 5.6 GHz and also covers the high-band frequencies ranging from 18 to 30 GHz with a bandwidth of 12 GHz. The suggested quad MIMO is fabricated on an FR-4 board, and the measured outcomes are well in line with the simulated results. An isolation value of −11 dB has been achieved for mid-band frequency and −24 dB has been attained for mm-wave bands. Through the value of DG = 10 dB, ECC < 0.07, TARC < −3 dB, MEG < −5 dB, and the ratio of MEG = 1 dB, uniplanar quad MIMO shows acceptable MIMO diversity performance. The entire system was evaluated for the users' hand specific absorption rate (SAR) impacts and is within the limits. After the complete analysis of the miniature quad MIMO antenna, an 8-port, and a 16-port uniplanar MIMO are simulated for smartphone-sized dielectric substrates and the performances were examined. The suggested MIMO system provides an efficient single-layer MIMO antenna to 5G smartphones with high bandwidth and low SAR. The proposed quad MIMO systems are suitable for both the sub-6 GHz band and the mm-wave band.  相似文献   

6.
This paper proposes four-ring slot resonator-based MIMO antennas of 75 × 150 mm2 without and with CSRR structures in the sub-6-GHz range. These orthogonal-fed antennas have shown diverse characteristics with dual polarization. L-shaped parasitic structures have increased the isolation (i.e., >40 dB) in the single-element antenna over the band of 3.4 GHz–3.8 GHz. A set of three CSRR structures in the MIMO antenna reduced the coupling between antenna ports placed in an inline arrangement and enhanced the isolation from 12 dB to 20 dB and the diversity characteristics. The S-parameters of both MIMO antennas are measured and used to evaluate MIMO parameters like ECC, TARC, MEG, and channel capacity loss. The simulation results show the variations in the gain and directivity on exciting linear and dual polarizations. The diversity performance of the reported MIMO antennas is suitable for 5G applications.  相似文献   

7.
提出了一款具有双陷波特性的紧凑型超宽带多输入多输出(ultra wideband multiple-input multiple-output, UWB-MIMO)天线. 天线由两个辐射元件组成,整体尺寸为41 mm×25 mm×1.6 mm. 通过在天线的接地平面中引入两个叠加的T型结构获得良好的隔离度;同时,通过在天线上刻蚀C型槽和U型槽实现双陷波特性,有效抑制了无线局域网(wireless local area networks, WLAN)和X波段通信卫星的干扰;并从表面电流分布的角度分析了陷波原理. 实验结果表明:所设计的MIMO天线的阻抗带宽为2.8~13.4 GHz,两个陷波频带分别为4.8~5.94 GHz和6.9~8.23 GHz;在整个工作带宽内,隔离度大于15 dB. 说明MIMO天线具有良好的辐射特性、稳定的增益和较低的包络相关系数(envelope correlation coefficient, ECC)(<0.1),适用于UWB-MIMO系统应用.  相似文献   

8.

A wideband, multi-standard MIMO antenna with hexagonal geometry and slot is proposed for DCS/PCS/LTE/UMTS applications while keeping the real time application at prime to provide high data rate, low latency, high capacity, non-line-of communication, and reliability with continuity. The designed prototype covers 1.64–2.50 GHz frequency band with percentage bandwidth of 41.55% and resonates at 2.1 GHz. The isolation of more than 10 dB is achieved in the 2:1 VSWR frequency band. The total bandwidth of the MIMO antenna is 860 MHz. The designed MIMO has peak gain of 5.4 dBi, ECC?<?0.06, radiation efficiency?>?88%, and total efficiency?>?71%. The TARC active bandwidth is 600 MHz with best excitation angles of 45°, 45° at ports. The hexagonal slot is used for the control of induced current for better isolation. The proposed MIMO antenna evaluates the SAR performance at resonant frequency for listening, holding, and watching positions, and is found under the required safety norms.

  相似文献   

9.

This article proposed a compact dual-element MIMO (multiple-input-multiple-output) antenna system working in 1.575 GHz (Global Positioning System)/4.5 GHz (5G)/5.8 GHz (Wireless Local Area Network)/6.4 GHz (Satellite communication) with relatively high isolation. The proposed antenna element consists of compact inverted-F antenna with meandered arm. One side of the T-shaped monopole antenna is extended and meandered while the other side is grounded to form the IFA structure. Meandering of the arm is responsible for the quad-band response. The proposed structure is simulated and fabricated on a FR4 substrate with an overall dimension of (0.23 λ0?×?0.09 λ0?×?0.004 λ0) and edge-to-edge separation of the two patches is 0.04 λ0, where λ0 is the wavelength at lower resonating frequency (1.575 GHz) of the proposed antenna. The high isolation is achieved by incorporating two inverted L-shaped strips and a narrow slot in the ground plane. Envelope correlation co-efficient (ECC) and channel capacity loss (CCL) are within their acceptable limits. Other different diversity parameters are evaluated and the results are satisfactory for MIMO applications.

  相似文献   

10.
In this paper, a compact coplanar waveguide (CPW) fed ultra-wide band (UWB) multi input multi output (MIMO) antenna is proposed. The antenna consists of two antiparallel hexagonal ring monopole elements. Circular arcs shaped grounded stubs are used to enhance the isolation, both the arcs are connected through stub to make common ground. Tapering of the slots of CPW feed line at feed point, and grounded slots are introduced for impedance matching over UWB. The proposed antenna is fabricated and impedance bandwidth, isolation, radiation pattern, and gain are measured. Moreover, envelop correlation coefficient (ECC) results are given. Proposed antenna structure operates in the frequency range 3–12 GHz with a fractional bandwidth of 120% keeping isolation better than 15 dB. The antenna has a compact size of 45 × 25 mm2.  相似文献   

11.
This article investigates the mutual coupling reduction of a compact two elements wearable ultra-wideband (UWB) multiple-input multiple-output (MIMO) antenna. The ground plane of the proposed wearable MIMO antenna structure consists of three connected square ring-shaped stubs and two rectangular slots of narrow height. These ground stubs and slots minimize the mutual coupling effect between antennas and provide high isolation. The suggested MIMO antenna functions from the 1.87 to 13.82 GHz frequency spectrum covering WLAN (2.4–2.484 GHz), UWB (3.1–10.6 GHz), and X band (8–12 GHz) with 152.32% fractional bandwidth. It sustains port isolation above 27 dB throughout the 2 to 13.82 GHz frequency band. Inside the whole working frequency band, the suggested antenna offers a tiny envelope correlation coefficient (ECC < 0.098), greater diversity gain (DG > 9.93 dB), minimum channel capacity loss (CCL < 0.32 bits/s/Hz), and slight magnitude variation in mean effective gain of antenna ports (< 0.1 dB). The recommended antenna yields a SAR level below the designated threshold (<1.6 W/kg), affirming its suitability for body-worn applications. The designed MIMO antenna structure has an overall volume of 32 × 48 × 1.5 mm3.  相似文献   

12.
In this paper, a novel multiple slot loading technique is studied in detail for the isolation enhancement of the dual‐band MIMO antenna system. The proposed MIMO antenna design consists of the microstrip patch loaded with T‐shaped slots parallel to the non‐radiating edge of the patch. The frequency tuning could be achieved by varying the length of the T‐shape slot arm. The proposed MIMO antenna system is optimised for operation in WLAN and WiMAX applications. The isolation enhancement is achieved by providing simple multiple slots loaded in the ground plane between radiating elements. The length of the slots is λ/4 . The system is fabricated and tested using a vector network analyser and anechoic chamber. The reduction in mutual coupling up to ?29.16 dB and ?24.09 dB for the 2.4 GHz and 3.4 GHz, respectively, is achieved. The bandwidths are 62.3 MHz (3.33–3.39 GHz) and 55.5 MHz (2.37–2.42 GHz), respectively. The total gain obtained in this case is 1.8 dBi at 2.4 GHz and 1.2 dBi at 3.4 GHz, respectively. The dimensions of the proposed designed antenna are 70 mm × 60 mm × 1.6 mm. The results were also verified through mutual coupling parameters like envelope correlation coefficient (ECC) and channel capacity loss (CCL) at the desired frequencies.  相似文献   

13.
The design of novel compact two-element and eight-element lotus shaped multiple-input-multiple-output (MIMO) antenna system employing pattern diversity with enhanced isolation characteristics is presented. The proposed two-element antenna system is arranged rotationally on a square-hollow substrate resulting in an eight-element MIMO antenna system employing pattern diversity. The developed eight-element MIMO antenna system resonates in the frequency range 3.1 to 14.6 GHz housing the complete UWB band with triple band-notch characteristics at 3.7–4.5 GHz (C-band satellite down link [3.7–4.2 GHz]), 5.1–5.9 GHz (WLAN) and 6.8–8.25 GHz (X-band satellite down link (7.25–7.75 GHz) and up link (7.9–8.4 GHz)) bands. The antenna system gives element-to-element isolation of more than 25 dB in the majority of the operating band with a peak gain of 6.8 dBi and a maximum 90% efficiency. The important MIMO metrics like ECC (envelope correlation coefficient), DG (diversity gain), total active reflection coefficient (TARC), channel capacity losses (CCL) and MEG (mean effective gain) are presented for both two-element and eight-element to estimate the performance the proposed antennas in multi-antenna environments. The both two- and eight-element designs are fabricated and the measured results of those are well agreed with simulation results.  相似文献   

14.
提出了一种面向5G的宽带8端口多输入多输出(multiple-input multiple-output,MIMO)天线.天线单元采用多枝节单极子结构,能够激发多模态,且能覆盖多频段.同时,采用弯折结构来实现小型化,且在相邻单元之间设计T形突出地结构来提高隔离度.仿真和实测结果显示,该天线在3~7.1 GHz内回波损耗大于10 dB,在3.3~7.1 GHz内隔离度高于15 dB.因为进行了有效的去耦,天线体现出明显的辐射分集特性,天线在目标sub-6 GHz频段内的包络相关系数(envelope correlation coefficient,ECC)接近0.在一8×8 MIMO系统中,计算得到的峰值遍历信道容量为43 bps/Hz,达到传统2×2 MIMO上限值的3.74倍.该8单元MIMO天线具有良好的分集和复用能力,能满足5G通信在sub-6 GHz的高速数据传输需要.  相似文献   

15.

In this article a modified hybridized fractal geometry i.e., fractal antenna is proposed for Multiple Input Multiple Output (MIMO) applications. These geometries are based on Minkowski curves and Koch curves located around the boundaries of the microstrip patch of rectangular-shaped patch. The hybridized model for fractal geometry is designed and analyzed on an FR4 substrate having a thickness of 1.47 mm for the Industrial, Scientific, and Medical (ISM) frequency band. But due to the proposed fractal geometry, it resonates at three bands (2.45 GHz, 3.67 GHz, and 5.88 GHz) and it is covering the ISM band from 2.42 GHz to 2.48 GHz with a VSWR value is 1.48. Further, a 2?×?2 antenna for MIMO application is proposed by considering identical antenna elements placed in parallel on the same substrate. MIMO antenna resonates at three frequencies as same as single antenna elements and covering the same operating bands. The two elements of MIMO confguration are simulated for various sets of distance values, and optimized distance is obtained 18 mm at which a proposed antenna provides low mutual coupling value, low Envelope Correlation Coefficient (ECC), and high diversity and peak gain. The calculated values of ECC and diversity gain are 0.0002 and 10 dB, respectively which satisfy the criteria of MIMO application. The design has been experimentally validated and an appropriate similarity of experimental and simulated results is achieved.

  相似文献   

16.
A compact ultrawideband multiple input multiple output antenna with dual band notch characteristics is proposed. The design utilizes the property of quasi-self-complementary monopoles to achieve a bandwidth that ranges from 2.2 GHz to 11 GHz. The design has a compact size of 30 mm × 41 mm × 1.59 mm. Two quasi-self complementary half circular monopoles are symmetrically arranged to obtain MIMO antenna. Bandnotch characteristics are obtained by adding parasitic strips of Levy's Fractal shape near the feed line. A Hilbert Fractal shaped slot is etched in the ground plane to enhance the isolation (|S21| < −20 dB) throughout the operational bandwidth. The measured and simulated radiation patterns are in good agreement and is found to be stable throughout the ultrawideband. Moreover, the measured peak gain is found to be 4 dBi.  相似文献   

17.
提出了一种紧凑、高性能、形状新颖的具有高隔离度的超宽带多输入多输出(ultra-wideband multiple-input multiple-output, UWB-MIMO)天线.天线由两个圆形辐射元件组成,享有共同的类F形接地平面,尺寸为30 mm×18 mm.在天线的接地平面中引入类F形短截线,在MIMO天线元件之间产生高度隔离.所设计的UWB-MIMO天线具有极低耦合(S21<-22 dB)、低包络相关系数(ECC<0.003)、高分集增益(DG>9.98 dB),适用于便携式通信设备.  相似文献   

18.

This article presents a compact Co-Planar Waveguide (CPW) fed antenna for next-generation Vehicular Communications. The antenna is designed by employing two rectangular stacked patch structures and slots, making the antenna resonate at dual frequency bands. The analytical study of antenna design is carried out using the governing microstrip patch equations. On optimizing the patch's dimensions for CPW structures, the desired frequency range of operation is obtained for the single element antenna structure. The designed antenna resonates at 3.5 GHz (LTE-42 Band) and 5.9 GHz (DSRC Band), yielding this antenna to be a prime component for Vehicular to Everything (V2X) Communication. The optimized single-element antenna structure is 35 mm?×?20 mm designed on an FR-4 substrate of thickness 1.6 mm. The substrate has a dielectric constant of 4.4 and a loss tangent value of 0.001. Further, the antenna structure is developed as a 4-element MIMO configuration with the distance between adjacent antenna elements to be 10 mm. The adjacent antennas in the MIMO configuration are positioned orthogonal to each other, thereby exhibiting better isolation between the antenna elements. The antenna has a reflection coefficient value of?<??10 dB within the bandwidth of interest and VSWR less than 2. The Gain value of the designed antenna ranges between 2.8 and 2.9 dBi at 3.5 GHz and between 3.6 and 3.7 dBi at 5.89 GHz. The overall efficiency of the antenna element is between 60 and 80% at both frequency bands. MIMO parameters are analyzed by calculating the Channel Capacity Loss (CL), Diversity Gain (DG), Envelope Correlation Coefficient (ECC) and Total Active Reflection Co-Efficient (TARC). The designed antenna is fabricated and tested, which shows the measured results coincide with the simulated antenna results. The overall dimension of the MIMO configured antenna design is 60 mm × 60 mm × 1.6 mm, which is highly compact and is a suitable candidate for deployment of Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), and Vehicle to Network (V2N) scenarios.

  相似文献   

19.
This article introduces a novel and groundbreaking approach combining multiple-input-multiple-output (MIMO) technology with radio frequency (RF) energy harvesting. The proposed antenna consists of two semi-circular monopole antenna components, optimized with dimensions of 89 × 51.02 × 1.6 mm3, that share a common ground plane to achieve MIMO characteristics. A series of split-ring resonators on the ground plane significantly enhances the isolation between the two radiating components. Band-notched features are performed in the 3.5 GHz WiMAX and 5.5 GHz WLAN bands through modified C-shaped slots in the radiating patch and two rectangular split-ring resonators serving as parasitic devices near the feed line. The reconfiguration of band-notching is made possible by controlling the modes of the embedded PIN diodes. The two antenna elements maintain mutual coupling below −18 dB from 1.5–13 GHz, achieving an impressive 158.62% impedance bandwidth. The antenna's efficiency and gain experience significant drop, indicating effective interference suppression at the center frequencies of the notch bands, and its performance in MIMO systems is assessed through parameters including envelope correlation coefficient, port isolation, radiation patterns, efficiency, gain, and diversity gain. The simulated properties of the designed antenna closely align with the measured outcomes, demonstrating its reliability and consistency. Moreover, the article evaluates the antenna's potential for RF energy harvesting, achieving a maximum harvested energy of 4.88 V. This proposed antenna can be used in multiple applications, like wideband, band-notching MIMO, and RF energy harvesting. This proposed antenna is an efficient, reconfigurable wideband MIMO antenna with novel RF energy harvesting capability.  相似文献   

20.

In this paper, two element multiple input–multiple output (MIMO) meander line antenna systems with improved isolation performance and compact size are proposed and fabricated in WLAN frequency band. To increase isolation among antenna elements, a novel metamaterial spiral S-shaped resonator is embedded between two radiating elements. The proposed resonator has planar configuration and miniaturized size and is capable of blocking electromagnetic propagation between antenna elements by exhibiting negative effective permeability in the desired frequency band. To illustrate and evaluate the design process, two design samples are fabricated and tested in WLAN frequency band and the agreement among measurement and simulation results approves the design method. In the frequency range of 2.38–2.48 GHz, some MIMO communication system requirements like total active reflection coefficient, envelope correlation coefficient and capacity loss are tested on design samples which show satisfactory results, so this method can be employed in designing array antennas for small mobile communication systems. The designed MIMO antenna systems separated by 13.8 mm (less than λ/9), has better than ??40 dB isolation coefficient and near zero correlation coefficient and capacity loss at the operating frequency (2.4 GHz).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号