首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aiming at the serious impact of the typical network attacks caused by the limited energy and the poor deployment environment of wireless sensor network (WSN) on data transmission,a trust sensing based secure routing mechanism (TSSRM) with the lightweight characteristics and the ability to resist many common attacks simultaneously was proposed.Based on the analysis of the characteristics of network attack,the trust degree calculation model was constructed by combining node’s behavior with energy,at the same time the security route selection algorithm was also optimized by taking trust degree and QoS metrics into account.Performance analysis and simulation results show that TSSRM can improve the security and effectiveness of WSN.  相似文献   

2.
Nodes in most of the deployments of Wireless Sensor Networks (WSNs) remain un-administered and exposed to variety of security attacks. Characterized by constrained resources and dynamically changing behavior of sensor nodes, reliable data delivery in WSNs is nontrivial. To counter node misbehavior attacks, traditional cryptographic and authentication based solutions have proved to be inappropriate due to high cost and incapability factors. Recently, trust based solutions have appeared to be viable solutions to address nodes’ misbehavior attacks. However, the existing trust based solutions incur high cost in trust estimation and network-wide dissemination which significantly increases traffic congestion and undermines network lifetime. This paper presents a Trust and Energy aware Secure Routing Protocol (TESRP) for WSN that exploits a distributed trust model for discovering and isolating misbehaving nodes. TESRP employs a multi-facet routing strategy that takes into consideration the trust level, residual energy, and hop-counts of neighboring nodes while making routing decisions. This strategy not only ensures data dissemination via trusted nodes but also balances out energy consumption among trusted nodes while traversing through shorter paths. Demonstrated by simulation results in NS-2, TESRP achieves improved performance in terms of energy consumption, throughput and network lifetime as compared to existing solutions.  相似文献   

3.
Shende  Dipali K.  Sonavane  S. S. 《Wireless Networks》2020,26(6):4011-4029

WSN serves as a medium for linking the physical and information network of IoT. Energy and trust are the two major factors that facilitate reliable communication in the network. During multicast routing, the BS engages in forwarding the data securely to the multiple destinations through the intermediate nodes, which is the major challenge in IoT. The paper addresses the challenges through proposing an energy-aware multicast routing protocol based on the optimization, CrowWhale-ETR, which is the integration of CSA and WOA based on the objective function designed with the energy and trust factors of the nodes. Initially, the trust and energy of the nodes are evaluated for establishing the routes that is chosen optimally using CWOA. This optimally chosen path is used for the data transmission, in which energy and trusts of the individual nodes are updated at the end of the individual transmission, in such a way the secure nodes can be selected, and which improves the secure communication in the network. The simulation is analyzed using 50 and 100 nodes in terms of the performance measures. The proposed method acquired the minimal delay of 0.2729 and 0.3491, maximal detection rate of 0.6726, maximal energy of 66.4275 and 71.0567, and maximal throughput of 0.4625 and 0.8649 in the presence and absence of attacks with 50 nodes for analysis.

  相似文献   

4.
一种基于信任模型的安全度量及安全路由算法设计   总被引:1,自引:0,他引:1  
针对网络路由的攻击普遍且后果严重。目前的研究大多是采用数字签名,消息验证和入侵检测等机制来提高路由控制信息的安全,基本没有考虑机密应用数据的路由安全问题。该文通过分析通信实体的安全机制和安全威胁来测量链路和节点的信任度,建立节点间的信任关系,并基于该信任模型定义和量化一种新的安全度量SM(Security Metric),提出以SM为选路标准的安全路由算法SMRA(Security Metric based Routing Algorithm)。仿真表明,网络存在攻击时,SMRA算法比OSPF算法有更好的包传输率和路由安全性能。  相似文献   

5.
通常的无线传感器分簇网络存在节点负载不均衡的问题。为均衡各节点能量消耗,延长网络生存周期,将K均值算法与遗传算法相结合,提出一种负载均衡的无线传感器网络路由算法,算法利用遗传算法的全局寻优能力以克服传统K均值算法的局部性和对初始中心的敏感性,实现了传感器网络节点自适应成簇与各节点负载均衡。仿真实验表明,该算法显著延长了网络寿命,相对于其他分簇路由算法,其网络生存时间延长了约43%。  相似文献   

6.
A Wireless Sensor Networks (WSNs) consist of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. WSNs are more vulnerable to attacks and failures due to the involvement of many numbers of tiny sensor nodes. As the technology is tremendously increasing in the recent past, the implementation of this for various time critical applications is quite interesting and challenging. Moreover, WSNs have no specific hierarchical structures, leads to security and maintenance problems. Trust in WSN is defined as the degree of belief or confidence about the nodes based on the past interactions and observations has which become a mandatory requirement for reliable communication in WSN under security constraints. In this paper, we propose a Heuristic Approach based Trust Worthy Architecture for WSN that considers the challenges of the system and focus on the collaborative mechanism for trust evaluation and maintenance. Our proposed Architecture could also be capable of fulfilling critical security, reliability, mobility and performance requirements for reliable communication while being readily adaptable to different applications. The simulation results of the proposed architecture outperformed the recent trust worthy architecture using the analysis of the performance requirements such as communication overhead, memory requirements and energy consumption.  相似文献   

7.
The dynamic nature of mobile nodes of ad hoc network is mostly affected by security problems which reduce data forwarding rate in multimedia sources. Due to the rapid growth of wireless applications, the different multitalented routing protocols are proposed in recent years. But the recent protocols are not efficient for multimedia applications, till now, specific security aware routing protocols are not proposed for multimedia data transfers. In this paper, we proposed trust enhanced cluster based multipath routing (TECM) algorithm. We use energy efficient PSO algorithm used to create cluster formation and cluster head, super cluster head are selected from trust values, which compute form proposed TECM algorithm. The multi trust factors are used for trust computation, such as frame/packet loss ratio, frame/packet forward energy, frame/packet receiving energy, routing overhead, received signal strength, frame/packet forward rate, average forward delay and protocol deviation flag. We then combine proposed TECM algorithm with standard multipath OLSR protocol (TECM-OLSR) to analyze the performance of proposed algorithm. The simulated results show that proposed TECM-OLSR protocol is very effective in terms of loss and delivery rate, delay, routing overhead and network lifetime compare to FPNT-OLSR.  相似文献   

8.
With the fast development of the micro-electro-mechanical systems(MEMS),wireless sensor networks(WSNs)have been extensively studied.Most of the studies focus on saving energy consumption because of restricted energy supply in WSNs.Cluster-based node scheduling scheme is commonly considered as one of the most energy-efficient approaches.However,it is not always so efficient especially when there exist hot spot and network attacks in WSNs.In this article,a secure coverage-preserved node scheduling scheme for WSNs based on energy prediction is proposed in an uneven deployment environment.The scheme is comprised of an uneven clustering algorithm based on arithmetic progression,a cover set partition algorithm based on trust and a node scheduling algorithm based on energy prediction.Simulation results show that network lifetime of the scheme is 350 rounds longer than that of other scheduling algorithms.Furthermore,the scheme can keep a high network coverage ratio during the network lifetime and achieve the designed objective which makes energy dissipation of most nodes in WSNs balanced.  相似文献   

9.
The cost efficiency of wireless platforms and their easy deployment enable the applicability of it in widespread application domains. Wireless sensor networks (WSNs) are not excluded from it. Their application domains vary from industrial monitoring to military applications. A WSN is a resource-constrained network and energy of the WSN node is a valuable resource. Like every other network, WSNs are also vulnerable to security attacks. A security attack can results in networks consuming more resources, leading to earlier depletion of node energy. A significant part of the resource consumption in a WSN is controlled by the medium access control (MAC) mechanism. This paper focuses on WSN MAC mechanisms and countermeasures for attacks targeting the MAC layer in a WSN. Denial of sleep attacks are the most relevant for WSN MAC as these types of attacks have shattered effects, which bring down the sensor lifetime from years to days. This paper proposes a secure hybrid MAC mechanism, Green and Secure Hybrid Medium Access Control (GSHMAC) to overcome the devastating effect of WSN MAC attacks. The proposed mechanism provides features such as collision threshold-based MAC mode control and countermeasures on WSN MAC using internal MAC mechanisms. GSHMAC shows improved energy-efficiency, delay, and throughput in the presence of attacks, as compared with state-of-art secure MAC mechanisms.  相似文献   

10.
In wireless sensor networks (WSNs), there are many critical applications (for example, healthcare, vehicle tracking, and battlefield), where the online streaming data generated from different sensor nodes need to be analyzed with respect to quick control decisions. However, as the data generated by these sensor nodes usually flow through open channel, so there are higher chances of various types of attacks either on the nodes or on to the data captured by these nodes. In this paper, we aim to design a new elliptic curve cryptography–based user authenticated key agreement protocol in a hierarchical WSN so that a legal user can only access the streaming data from generated from different sensor nodes. The proposed scheme is based upon 3‐factor authentication, as it applies smart card, password, and personal biometrics of a user (for ticket generation). The proposed scheme maintains low computation cost for resource‐constrained sensor nodes, as it uses efficient 1‐way cryptographic hash function and bitwise exclusive‐OR operations for secure key establishment between different sensor nodes. The security analysis using the broadly accepted Burrows‐Abadi‐Needham logic, formal security verification using the popular simulation tool (automated validation of Internet security protocols and applications), and informal security show that the proposed scheme is resilient against several well‐known attacks needed for a user authentication scheme in WSNs. The comparison of security and functionality requirements, communication and computation costs of the proposed scheme, and other related existing user authentication schemes shows the superior performance of the proposed scheme.  相似文献   

11.
Sensor networks can be used in many sorts of environments. The increase of pollution and carbon footprint are nowadays an important environmental problem. The use of sensors and sensor networks can help to make an early detection in order to mitigate their effect over the medium. The deployment of wireless sensor networks (WSNs) requires high‐energy efficiency and secures mechanisms to ensure the data veracity. Moreover, when WSNs are deployed in harsh environments, it is very difficult to recharge or replace the sensor's batteries. For this reason, the increase of network lifetime is highly desired. WSNs also work in unattended environments, which is vulnerable to different sort of attacks. Therefore, both energy efficiency and security must be considered in the development of routing protocols for WSNs. In this paper, we present a novel Secure and Low‐energy Zone‐based Routing Protocol (SeLeZoR) where the nodes of the WSN are split into zones and each zone is separated into clusters. Each cluster is controlled by a cluster head. Firstly, the information is securely sent to the zone‐head using a secret key; then, the zone‐head sends the data to the base station using the secure and energy efficient mechanism. This paper demonstrates that SeLeZoR achieves better energy efficiency and security levels than existing routing protocols for WSNs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Considering severe resources constraints and security threat hierarchical routing protocol algorithm. The proposed routing of wireless sensor networks (WSN), the article proposed a novel protocol algorithm can adopt suitable routing technology for the nodes according to the distance of nodes to the base station, density of nodes distribution, and residual energy of nodes. Comparing the proposed routing protocol algorithm with simple direction diffusion routing technology, cluster-based routing mechanisms, and simple hierarchical routing protocol algorithm through comprehensive analysis and simulation in terms of the energy usage, packet latency, and security in the presence of node protocol algorithm is more efficient for wireless sensor networks. compromise attacks, the results show that the proposed routing  相似文献   

13.
Hong  Zhen  Shao  Qian  Liao  Xiaojing  Beyah  Raheem 《Wireless Networks》2019,25(7):3805-3823

With the emergence of the Internet of Things (IoT) in recent years, the security has been significantly called more and more people’s attention on wireless communication between the devices and the human-beings, as well as the devices to devices. Smart home (SH), as a small-scale example of the smart application-based field, has benefited from the concept of IoT since it uses an indoor data-centric sensor network. In SH, routing schemes are widely utilized for data aggregation purposes. However, there are three main issues, which can considerably affect the current execution of routing protocol in SH: (1) lack of technical methods for precisely regional division of the network, (2) the difficulty of differentiating data among various functional regions, and (3) the vulnerability of network with advanced internal routing attacks. To address the aforementioned issues, in this paper, a two-layer cluster-based network model for indoor structured SH and a novel Beta-based trust management (BTM) scheme are proposed to defend various types of internal attacks by integrating the variation of trust value, threshold, and evaluation. The proposed structure forms a secure hierarchical routing protocol called SH-PCNBTM to effectively support the data transmission service in SH networks. The performance of SH-PCNBTM is thoroughly evaluated by using a set of comprehensive simulations. We will show that the proposed routing protocol not only ensures the even distribution of cluster-heads in each sub-region, but it also identifies and isolates the malicious sensor nodes accurately and rapidly compared with other trust-based hierarchical routing protocols.

  相似文献   

14.
A mobile ad hoc network (MANET) is a self-configurable network connected by wireless links. This type of network is only suitable for provisional communication links as it is infrastructure-less and there is no centralized control. Providing QoS and security aware routing is a challenging task in this type of network due to dynamic topology and limited resources. The main purpose of secure and trust based on-demand multipath routing is to find trust based secure route from source to destination which will satisfy two or more end to end QoS constraints. In this paper, the standard ad hoc on-demand multi-path distance vector protocol is extended as the base routing protocol to evaluate this model. The proposed mesh based multipath routing scheme to discover all possible secure paths using secure adjacent position trust verification protocol and better link optimal path find by the Dolphin Echolocation Algorithm for efficient communication in MANET. The performance analysis and numerical results show that our proposed routing protocol produces better packet delivery ratio, reduced packet delay, reduced overheads and provide security against vulnerabilities and attacks.  相似文献   

15.

In general, Wireless Sensor Networks (WSNs) is developed with a group of distributed and locative sensor nodes for sensing different environmental conditions. The primary challenges faced by WSN are: low network time and transmission data delay. In crucial applications like monitoring the ecosystem, military and disaster management, and data routing, the incorporation of WSN is very critical. Henceforth, a Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol was proposed but it was found to be uneconomical for energy management. Also, the optimization of Cluster Head (CH) is considered as NP hard problem. This research work deals the issues in optimal path selection in routing of wireless sensor networks to increase the network lifetime. Various techniques are available in metaheuristics, such as the Charged System Search (CSS), that effectively used to resolve the routing problem. Despite of this, most of the meta-heuristics suffer from local optima issues. A charged system search and harmony search algorithm based routing protocol is presented in this research work. Experimental results present the efficient performance of proposed HS model with increased cluster structures, improved network lifetime and reduced end-to-end delay and average packet loss rate.

  相似文献   

16.
The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network (WSN). Although the hierarchical routing protocol can effectively cope with large-scale application scenarios, how to elect a secure cluster head and balance the network load becomes an enormous challenge. In this paper, a Trust Management-based and ​Low Energy Adaptive Clustering Hierarchy protocol (LEACH-TM) is proposed. In LEACH-TM, by using the number of dynamic decision cluster head nodes, residual energy and density of neighbor nodes, the size of the cluster can be better constrained to improve energy efficiency, and avoid excessive energy consumption of a node. Simultaneously, the trust management scheme is introduced into LEACH-TM to defend against internal attacks. The simulation results show that, compared with LEACH-SWDN protocol and LEACH protocol, LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption, and can effectively mitigate the influence of malicious nodes on cluster head selection, which can greatly guarantee the security of the overall network.  相似文献   

17.
蔡绍滨  韩启龙  高振国  杨德森  赵靖 《电子学报》2012,40(11):2232-2238
 无线传感器网络(Wireless Sensor Network,简称WSN)是一种没有基础设施的自组织无线网络.和其它网络一样,WSN需要安全措施来保证网络通信的安全.但是,在无线传感器网络中,基于密码的安全体系不能有效处理来自网络内部的攻击,识别出恶意节点.因此,信任模型被用于无线传感器网络恶意节点识别.在信任模型和云理论的研究基础上,本文构建了一个基于云理论的无线传感器网络信任模型——云信任模型(CTM,Cloud-based Trust Model).实验结果表明,云信任模型能够有效识别恶意节点.  相似文献   

18.

Wireless sensor networks (WSNs) are spatially distributed devices to support various applications. The undesirable behavior of the sensor node affects the computational efficiency and quality of service. Fault detection, identification, and isolation in WSNs will increase assurance of quality, reliability, and safety. In this paper, a novel neural network based fault diagnosis algorithm is proposed for WSNs to handle the composite fault environment. Composite fault includes hard, soft, intermittent, and transient faults. The proposed fault diagnosis protocol is based on gradient descent and evolutionary approach. It detects, diagnose, and isolate the faulty nodes in the network. The proposed protocol works in four phases such as clustering phase, communication phase, fault detection and classification phase, and isolation phase. Simulation results show that the proposed protocol performs better than the existing protocols in terms of detection accuracy, false alarm rate, false positive rate, and detection latency.

  相似文献   

19.
Wireless sensor networks are vulnerable to a wide set of security attacks, including those targeting the routing protocol functionality. The applicability of legacy security solutions is disputable (if not infeasible), due to severe restrictions in node and network resources. Although confidentiality, integrity and authentication measures assist in preventing specific types of attacks, they come at high cost and, in most cases, cannot shield against routing attacks. To face this problem, we propose a secure routing protocol which adopts the geographical routing principle to cope with the network dimensions, and relies on a distributed trust model for the detection and avoidance of malicious neighbours. A novel function which adaptively weights location, trust and energy information drives the routing decisions, allowing for shifting emphasis from security to path optimality. The proposed trust model relies on both direct and indirect observations to derive the trustworthiness of each neighboring node, while it is capable of defending against an increased set of routing attacks including attacks targeting the indirect trust management scheme. Extensive simulation results reveal the advantages of the proposed model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号