首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
优化链路状态路由协议(OLSR)一直是IETF路由区域MANET(移动AdHoc网络)工作组的关注点。最近,IETFMANET论坛通过对OLSRv2的深入研究,公布了3个基础性的规范,即RFC5444(通用化的移动AdHoc网络分组与消息格式)、RFC5497(移动AdHoc网络中的多值时间表示)以及RFC6130(移动AdHoc网络邻域发现协议)。目前OLSRv2草案已进展到第19个版本,将很快成为正式的RFC规范。文中首先叙述了OLSRv2有关的3个基础性RFC规范以及OLSRv2草案对OLSRvl的改进,然后叙述了3种进一步减少泛洪开销的机制。最后,通过OPNET仿真进行了开销总量的对比。  相似文献   

2.
Wu  Jingbang  Lu  Huimei  Xiang  Yong  Cai  Bingying  Wang  Weitao  Liu  Ruilin 《Wireless Personal Communications》2017,97(4):5597-5619

Non-uniform node densities occur and intermittent links exist in highly dynamic ad hoc networks. To fit these networks, researchers usually combine delay tolerant network (DTN) routing protocols and mobile ad hoc network (MANET) routing protocols. The DTN protocol separates end-to-end links into multiple DTN links, which consist of multi-hop MANET links. Determining how to arrange DTN links and MANET links from source to end and dealing with intermittent links are performance issues, because node density ranges from sparse to dense and MANET protocols are much lighter than DTN protocols. This paper presents HMDTN, an application-network cross-layer framework, to solve the previously mentioned issues. The application layer in HMDTN supports disrupt tolerance with a large data buffer while adjusting the routing table on the basis of the connection state of links (link is disrupted or recovered), which are collected by the network layer. As a result, HMDTN increases the bandwidth utilization of intermittent links without compromising the efficiency of the MANET protocol in a reliable network. The HMDTN prototype was implemented based on Bytewalla (a Java version of DTN2) and Netfilter-based AODV. Experiments on Android devices show that unlike AODV and Epidemic, HMDTN increases the bandwidth utilization of intermittent links with a negligible increase of network overhead. In particular, HMDTN maintains the network throughput as high as regular network conditions even if the network undergoes relatively long-term (dozens of seconds or few minutes) data link disruptions.

  相似文献   

3.
A mobile ad hoc network (MANET) is a self‐organized and adaptive wireless network formed by dynamically gathering mobile nodes. Since the topology of the network is constantly changing, the issue of routing packets and energy conservation become challenging tasks. In this paper, we propose a cross‐layer design that jointly considers routing and topology control taking mobility and interference into account for MANETs. We called the proposed protocol as Mobility‐aware Routing and Interference‐aware Topology control (MRIT) protocol. The main objective of the proposed protocol is to increase the network lifetime, reduce energy consumption, and find stable end‐to‐end routes for MANETs. We evaluate the performance of the proposed protocol by comprehensively simulating a set of random MANET environments. The results show that the proposed protocol reduces energy consumption rate, end‐to‐end delay, interference while preserving throughput and network connectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.

The network lifetime of Wireless Sensor Network (WSN) is one of the most challenging issues for any network protocol. The nodes in the network are densely deployed and are provided with limited power supply. The routing strategy is treated as an effective solution to improve the lifetime of the network. The cluster based routing techniques are used in the WSN to enhance the network lifespan and to minimize the energy consumption of the network. In this paper, an energy efficient heterogeneous clustering protocol for the enhancement of the network lifetime is proposed. The proposed protocol uses the sensor energy for the clustering process in a well-organized manner to maximize the lifetime of network. The MATLAB simulator is used for implementing the clustering model of proposed protocol and for measuring the effectiveness of the proposed technique the comparison is performed with the various existing approaches such as Stability Election Protocol, Distributed Energy Efficient Clustering and Adaptive Threshold Energy Efficient cross layer based Routing.

  相似文献   

5.

Worldwide Interoperability for Microwave Access (Wimax) is power station through which mobile network, commonly known as A Mobile Ad-hoc Network (MANET) is used by the people. A MANET can be described as an infrastructure-less and self-configure network with autonomous nodes. Participated nodes in MANETs move through the network constantly causing frequent topology changes. Designing suitable routing protocols to handle the dynamic topology changes in MANETs can enhance the performance of the network. In this regard, this paper proposes four algorithms for the routing problem in MANETs. First, we propose a new method called Classical Logic-based Routing Algorithm for the routing problem in MANETs. Second is a routing algorithm named Fuzzy Logic-based Routing Algorithm (FLRA). Third, a Reinforcement Learning-based Routing Algorithm is proposed to construct optimal paths in MANETs. Finally, a fuzzy logic-based method is accompanied with reinforcement learning to mitigate existing problems in FLRA. This algorithm is called Reinforcement Learning and Fuzzy Logic-based (RLFLRA) Routing Algorithm. Our proposed approaches can be deployed in dynamic environments and take four important fuzzy variables such as available bandwidth, residual energy, mobility speed, and hop-count into consideration. Simulation results depict that learning process has a great impact on network performance and RLFLRA outperforms other proposed algorithms in terms of throughput, route discovery time, packet delivery ratio, network access delay, and hop-count.

  相似文献   

6.

Optimization of energy consumption in the batteries of a sensor node plays an essential role in wireless Sensor networks (WSNs). The longevity of sensor nodes depends on efficiency of energy utilization in batteries. Energy is consumed by sensor nodes in WSNs to perform three significant functions namely data sensing, transmitting and relaying. The battery energy in WSNs depletes mainly due to sampling rate and transmission rate. In the present work, the most important parameters affecting the longevity of network are indentified by modeling the energy consumption. The parameters are expressed as a fuzzy membership function of variables affecting the life time of network. Fuzzy logic is used at multiple levels to optimize the parameters. Network simulator-2 is used for experimentation purpose. The proposed work is also compared with the existing routing protocols like Enhanced Low Duty Cycle, Threshold Sensitive Energy Efficient Sensor Network and Distributed Energy Efficient Adaptive Clustering Protocol with Data Gathering. The proposed solution is found to be more energy efficient and hence ensures longer network lifetime.

  相似文献   

7.
Mobile ad-hoc network (MANET) is a category of ad-hoc network that can be reconfigurable its network. MANETS are self-organized networks, that can use the wireless links to connect various networks via mobile nodes: but it consumes more energy and it also has routing problems. This is the major drawback of being connected with the MANET technology. Therefore, this study proposes a new protocol as deep Q-learning network optimized with chaotic bat swarm optimization algorithm (CBS)-based optimized link state routing (OLSR) (CBS-OLSR) for MANET. This protocol reduces MANET energy usage and adopts OLSR multi-point relay (MPR) technology. MANET's OLSR and the CBS algorithm utilize a similar method to locate the best optimum path from source to destination node. By embedding the new improved deep Q-learning and OLSR algorithms, both are used for optimizing the MPR sets selection, it can efficiently diminish the energy consumption in the network topology, but automatically increase the lifespan of the network. It also enhances the package delivery ratio and decreases end-to-end delay. The experimental outcomes prove that the proposed protocol is reliable and proficient that is appropriate for numerous MANET applications.  相似文献   

8.
The Internet protocol version 6 (IPv6)-enabled network architecture has recently attracted much attention. In this paper, we address the issue of connecting mobile ad hoc networks (MANETs) to global IPv6 networks, while supporting IPv6 mobility. Specifically, we propose a self-organizing, self-addressing, self-routing IPv6-enabled MANET infrastructure, referred to as IPv6-based MANET. The proposed self-organization addressing protocol automatically organizes nodes into tree architecture and configures their global IPv6 addresses. Novel unicast and multicast routing protocols, based on longest prefix matching and soft state routing cache, are specially designed for the IPv6-based MANET. Mobile IPv6 is also supported such that a mobile node can move from one MANET to another. Moreover, a peer-to-peer (P2P) information sharing system is also designed over the proposed IPv6-based MANET. We have implemented a prototyping system to demonstrate the feasibility and efficiency of the IPv6-based MANET and the P2P information sharing system. Simulations are also conducted to show the efficiency of the proposed routing protocols.  相似文献   

9.
Energy and routing efficiency is a long-research topic from past decades in the area of MANET. The prior research contribution focusing on addressing both the issues are associated with issues like (1) few benchmarked studies, (2) adoption of conventional routing protocols based on shortest path to mitigate both issues, and (3) inefficient design principles of routing. Hence, this paper proposes a novel routing protocol in mobile ad hoc network (MANET) termed as MECOR i.e. minimal energy consumption with optimized routing. MECOR presents a simple communication strategy based on mathematical and signaling properties of mobile nodes in MANET to jointly address the energy and routing issues in MANET. The outcome of the MECOR was compared with conventional routing algorithm as well as recent studies of energy efficient routing policy to find that MECOR can minimize 58.82 % of energy in most challenging mobility scenarios of MANET.  相似文献   

10.
Peer-to-peer (P2P) live streaming over mobile ad hoc network (MANET) is a state-of-the-art technique for wireless multimedia applications, such as entertainments and disaster recovery. The peers share the live streaming over MANET via multi-hop wireless link, so an efficient data delivery scheme must be required. However, the high churn rate and the frequent mobility baffle the P2P membership management and overlay maintenance. The unreliable wireless connection of MANET leads to the difficulties of large-scale and real-time streaming distribution, and a lack of overlay proximity leads to the inefficient streaming delivery. We present a cross-layer design for P2P over MANET to manage and maintain the overlay, and select efficient routing path to multicast media streams. Our proposed scheme (COME-P2P) integrates both P2P DHT-based lookup and IPv6 routing header to improve the delivery efficiency. Through the cross-layer design, the low layer detects mobility for informing high layer to refine the finger table, and high layer maintains the efficient multicast path for informing low layer to refine the routing table. How to keep stable routing paths for live streaming via IPv6 routing is the main contribution of this paper. The overlay proximity can shorten routing propagation delay, and the hop-by-hop routing can avoid the traffic bottleneck. Through the mathematical analysis and simulation results, COME-P2P can be demonstrated to achieve high smoothness and reduce signaling overhead for live streaming.  相似文献   

11.
This paper proposes a new Energyefficient Survivable Routing Protocol(ESRP)based on solar energy and wind mixed for power supply in green wireless mesh networks(WMNs).The ESRP combines hop penalty strategy and flooding delaying strategy to improve the performances of traditional routing protocol.This paper uses QualNet to simulate and verify the performances of proposed ESRP.Compared with the traditional routing protocol,the simulation results show that the energy utilization of ESRP is more efficient by 13%.At the same time,ESRP is more load-balanced to postpone the appearance of the first energy depletion node and reduce the number of energy depletion nodes,and thus it effectively improves network survivability.  相似文献   

12.
Ali Dorri 《Wireless Networks》2017,23(6):1767-1778
Mobile Ad hoc Network (MANET) is a self-configurable, self-maintenance network with wireless, mobile nodes. Special features of MANET like dynamic topology, hop-by-hop communications and open network boundary, made security highly challengeable in this network. From security aspect, routing protocols are highly vulnerable against a wide range of attacks like black hole. In black hole attack malicious node injects fault routing information to the network and leads all data packets toward it-self. In this paper, we proposed an approach to detect and eliminate cooperative malicious nodes in MANET with AODV routing protocol. A data control packet is used in order to check the nodes in selected path; also, by using an Extended Data Routing Information table, all malicious nodes in selected path are detected, then, eliminated from network. For evaluation, our approach and a previous work have been implemented using Opnet 14 in different scenarios. Referring to simulation results, the proposed approach decreases packet overhead and delay of security mechanism with no false positive detection. In addition, network throughput is improved by using the proposed approach.  相似文献   

13.
由于自组网独特的特性,在该网络中支持QoS非常困难,需要进行系统研究。本文首先分析了自组网中QoS支持面临的挑战,接着从系统角度出发,结合自组网的特点,在QoS模型和QoS支持体系以及体系中具体的QoS技术等方面对自组网QoS支持做了详尽的分析与探讨,同时指出:定义自组网QoS模型需要综合考虑应用需求和网络特性;实现QoS模型可以采用分层QoS支持体系或跨层QoS支持体系,而后者将是今后研究的重点;结合路由层、MAC层和物理层的跨层QoS支持体系具有研究价值。  相似文献   

14.
ABSTRACT

In recent days, due to the wide verities of applications of Wireless Sensor Networks, it gets recognition from research communities. As the sensor nodes are operated through limited battery capacity, how to utilise the battery power or energy in an optimum way is a major concern. In this paper, we have addressed the energy issue of wireless sensor networks. We have developed an energy-efficient routing protocol. This paper proposes the Novel Elite group concept where the cluster-head selection process is restricted to only a few high-energy nodes rather than all nodes in the network, which substantially reduces the number of cluster-head selection overhead in every iteration, decreases the energy consumption and increases network lifetime. Our method is compared with three well-known routing protocols, i.e. EECRP (Energy Efficient Centroid-Based Routing Protocol) protocol, NCBR (New Cooperative Balancing Routing Protocol) and Mod-LEACH (Modified low-Energy Adaptive Clustering Hierarchy Protocol). We have conducted a simulation in NS-2 simulator. We have computed various network quality parameters like Throughput, transmission delay, analysis of the number of dead nodes (reciprocal of alive nodes) and energy dissipation with respect to the number of simulation rounds. The simulation results show that our proposed methodology outperforms the rest of the protocol.  相似文献   

15.
Pu  Cong  Lim  Sunho  Chae  Jinseok  Jung  Byungkwan 《Wireless Networks》2019,25(4):1669-1683

Mobile ad hoc network (MANET) is vulnerable to security attacks because of the shared radio medium and lack of centralized coordination. Since most multi-hop routing protocols implicitly assume cooperative routing and are not originally designed for security attacks, MANET has been challenged by diverse denial-of-service attacks that often interfere with the protocol and interrupt on-going communication. In this paper, we propose an explore-based active detection scheme, called EBAD, to efficiently mitigate the routing misbehaviors in MANETs running with dynamic source routing. The basic idea is that a source node broadcasts a route request packet with a fictitious destination node to lure potential malicious nodes to reply a fake route reply packet. If the source node receives the fake route reply packet or an intermediate node cannot decrypt the received route reply packet, the routing misbehavior can be detected. We also propose a route expiry timer based approach to reduce the effect of route cache pollution because of the fake route reply. We present a simple analytical model of the EBAD and its numerical result in terms of detection rate. We also conduct extensive simulation experiments using the OMNeT++ for performance evaluation and comparison with the existing schemes, CBDS and 2ACK. The simulation results show that the proposed countermeasure can not only improve the detection rate and packet delivery ratio but also can reduce the energy consumption and detection latency.

  相似文献   

16.
Designing an energy efficient routing protocol is one of the main issue of Mobile Ad-hoc Networks (MANETs). It is challenging task to provide energy efficient routes because MANET is dynamic and mobile nodes are fitted with limited capacity of batteries. The high mobility of nodes results in quick changes in the routes, thus requiring some mechanism for determining efficient routes. In this paper, an Intelligent Energy-aware Efficient Routing protocol for MANET (IE2R) is proposed. In IE2R, Multi Criteria Decision Making (MCDM) technique is used based on entropy and Preference Ranking Organization METHod for Enrichment of Evaluations-II (PROMETHEE-II) method to determine efficient route. MCDM technique combines with an intelligent method, namely, Intuitionistic Fuzzy Soft Set (IFSS) which reduces uncertainty related to the mobile node and offers energy efficient route. The proposed protocol is simulated using the NS-2 simulator. The performance of the proposed protocol is compared with the existing routing protocols, and the results obtained outperforms existing protocols in terms of several network metrics.  相似文献   

17.
A magnanimous number of collaborative sensor nodes make up a Wireless Sensor Network (WSN). These sensor nodes are outfitted with low-cost and low-power sensors. The routing protocols are responsible for ensuring communications while considering the energy constraints of the system. Achieving a higher network lifetime is the need of the hour in WSNs. Currently, many network layer protocols are considering a heterogeneous WSN, wherein a certain number of the sensors are rendered higher energy as compared to the rest of the nodes. In this paper, we have critically analysed the various stationary heterogeneous clustering algorithms and assessed their lifetime and throughput performance in mobile node settings also. Although many newer variants of Distributed Energy-Efficiency Clustering (DEEC) scheme execute proficiently in terms of energy efficiency, they suffer from high system complexity due to computation and selection of large number of Cluster Heads (CHs). A protocol in form of Cluster-head Restricted Energy Efficient Protocol (CREEP) has been proposed to overcome this limitation and to further improve the network lifetime by modifying the CH selection thresholds in a two-level heterogeneous WSN. Simulation results establish that proposed solution ameliorates in terms of network lifetime as compared to others in stationary as well as mobile WSN scenarios.  相似文献   

18.
Recently, wireless networks have become one of the major development trends in computer network technology. Because there is no more need of the wired transmission medium, applications have thus diversified. One such growing field of wireless networks is the mobile ad‐hoc network (MANET). A MANET consists of mobile hosts (such as portable laptops, vehicles, etc.), and no fixed infrastructure is required. MANETs provide ease of self‐configuration and can extend coverage at a low cost. Numerous applications have therefore been proposed under this network environment for daily life use. Because MANETs nodes are capable of moving, MANET network topology changes frequently. Thus, the traditional routing protocols fail to fit such an environment. In this paper, we propose an efficient routing protocol for MANETs, which integrates the mathematical model of profit optimization (the Kelly formula) from the field of economics to cope with the routing problem caused by node mobility. Some numerical simulations have been conducted to evaluate the performance of the proposed method using the network simulator NS‐2. The results show that our proposed method outperforms conventional routing protocols in packet delivery ratio comparisons; and the average end‐to‐end delays are within a tolerable range. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
An efficient anonymous communication protocol, called MANET Anonymous Peer-to-peer Communication Protocol (MAPCP), for P2P applications over mobile ad-hoc networks (MANETs) is proposed in this work. MAPCP employs broadcasts with probabilistic-based flooding control to establish multiple anonymous paths between communication peers. It requires no hop-by-hop encrypt ion/decryption along anonymous paths and, hence, demands lower computational complexity and power consumption than those MANET anonymous routing protocols. Since MAPCP builds multiple paths to multiple peers within a single query phase without using an extra route discovery process, it is more efficient in P2P applications. Through analysis and extensive simulations, we demonstrate that MAPCP always maintains a higher degree of anonymity than a MANET anonymous single-path routing protocol in a hostile environment. Simulation results also show that MAPCP is resilient to passive attacks  相似文献   

20.

With the powerful evolution of wireless communication systems in recent years, mobile ad hoc networks (MANET) are more and more applied in many fields such as environment, energy efficiency, intelligent transport systems, smart agriculture, and IoT ecosystems, as well as expected to contribute role more and more important in the future Internet. However, due to the characteristic of the mobile ad hoc environment, the performance is dependent mainly on the deployed routing protocol and relative low. Therefore, routing protocols should be more flexible and intelligent to enhance network performance. This paper surveyed and analysed a series of recently proposed routing protocols for MANET-IoT networks. Results have shown that these protocols are classified into four main categories: performance improvement, quality of service (QoS-aware), energy-saving, and security-aware. Most protocols are evolved from these existing traditional protocols. Then, we compare the performance of the four traditional routing protocols under the different movement speeds of the network node aim determines the most stable routing protocol in smart cities environments. The experimental results showed that the proactive protocol work is good when the movement network nodes are low. However, the reactive protocols have more stable and high performance for high movement network scenarios. Thus, we confirm that the proposal of the routing protocols for MANET becomes more suitable based on improving the ad hoc on-demand distance vector routing protocol. This study is the premise for our further in-depth research on IoT ecosystems.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号