首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nearly singular integrals occur in the boundary integral equations when the source point is close to an integration element (as compared to its size) but not on the element. In this paper, the concept of a relative distance from a source point to the boundary element is introduced to describe possible influence of the singularity of the integrals. Then a semi-analytical algorithm is proposed for evaluating the nearly strongly singular and hypersingular integrals in the three-dimensional BEM. By using integration by parts, the nearly singular surface integrals on the elements are transformed to a series of line integrals along the contour of the element. The singular behavior, which appears as factor, is separated from remaining regular integrals. Consequently standard numerical quadrature can provide very accurate evaluation of the resulting line integrals. The semi-analytical algorithm is applied to analyzing the three-dimensional elasticity problems, such as very thin-walled structures. Meanwhile, the displacements and stresses at the interior points very close to its bounding surface are also determined efficiently. The results of the numerical investigation demonstrate the accuracy and effectiveness of the algorithm.  相似文献   

2.
The transient response of cracked composite materials made of piezoelectric and piezomagnetic phases, when subjected to in-plane magneto-electro-mechanical dynamic loads, is addressed in this paper by means of a mixed boundary element method (BEM) approach. Both the displacement and traction boundary integral equations (BIEs) are used to develop a single-domain formulation. The convolution integrals arising in the time-domain BEM are numerically computed by Lubich’s quadrature, which determines the integration weights from the Laplace transformed fundamental solution and a linear multistep method. The required Laplace-domain fundamental solution is derived by means of the Radon transform in the form of line integrals over a unit circumference. The singular and hypersingular BIEs are numerically evaluated in a precise and efficient manner by a regularization procedure based on a simple change of variable, as previously proposed by the authors for statics. Discontinuous quarter-point elements are used to properly capture the behavior of the extended crack opening displacements (ECOD) around the crack-tip and directly evaluate the field intensity factors (stress, electric displacement and magnetic induction intensity factors) from the computed nodal data. Numerical results are obtained to validate the formulation and illustrate its capabilities. The effect of the combined application of electric, magnetic and mechanical loads on the dynamic field intensity factors is analyzed in detail for several crack configurations under impact loading.  相似文献   

3.
The numerical integration of all singular surface integrals arising in 3-d boundary element methods is analyzed theoretically and computationally. For all weakly singular integrals arising in BEM, Duffy's triangular or local polar coordinates in conjunction with tensor product Gaussian quadrature are efficient and reliable for bothh-andp-boundary elements. Cauchy- and hypersingular surface integrals are reduced to weakly singular ones by analytic regularization which is done automatically by symbolic manipulation.  相似文献   

4.
We present a procedure for the design of high-order quadrature rules for the numerical evaluation of singular and hypersingular integrals; such integrals are frequently encountered in solution of integral equations of potential theory in two dimensions. Unlike integrals of both smooth and weakly singular functions, hypersingular integrals are pseudo-differential operators, being limits of certain integrals; as a result, standard quadrature formulae fail for hypersingular integrals. On the other hand, such expressions are often encountered in mathematical physics (see, for example, [1]), and it is desirable to have simple and efficient “quadrature” formulae for them. The algorithm we present constructs high-order “quadratures” for the evaluation of hypersingular integrals. The additional advantage of the scheme is the fact that each of the quadratures it produces can be used simultaneously for the efficient evaluation of hypersingular integrals, Hilbert transforms, and integrals involving both smooth and logarithmically singular functions; this results in significantly simplified implementations. The performance of the procedure is illustrated with several numerical examples.  相似文献   

5.
The implementation of the symmetric Galerkin boundary element method (SGBEM) involves extensive work on the evaluation of various integrals, ranging from regular integrals to hypersingular integrals. In this paper, the treatments of weak singular integrals in the time domain are reviewed, and analytical evaluations for the spatial double integrals which contain weak singular terms are derived. A special scheme on the allocation of Gaussian integration points for regular double integrals in the SGBEM is developed to improve the efficiency of the Gauss–Legendre rule. The proposed approach is implemented for the two-dimensional elastodynamic problems, and two numerical examples are presented to verify the accuracy of the numerical implementation.  相似文献   

6.
We introduce a novel enriched Boundary Element Method (BEM) and Dual Boundary Element Method (DBEM) approach for accurate evaluation of Stress Intensity Factors (SIFs) in crack problems. The formulation makes use of the Partition of Unity Method (PUM) such that functions obtained from a priori knowledge of the solution space can be incorporated in the element formulation. An enrichment strategy is described, in which boundary integral equations formed at additional collocation points are used to provide auxiliary equations in order to accommodate the extra introduced unknowns. In addition, an efficient numerical quadrature method is outlined for the evaluation of strongly singular and hypersingular enriched boundary integrals. Finally, results are shown for mixed mode crack problems; these illustrate that the introduction of PUM enrichment provides for an improvement in accuracy of approximately one order of magnitude in comparison to the conventional unenriched DBEM.  相似文献   

7.
The piezoelectric boundary integral equation (BIE) formulation is applied to analyze thin piezoelectric solids, such as thin piezoelectric films and coatings, using the boundary element method (BEM). The nearly singular integrals existing in the piezoelectric BIE as applied to thin piezoelectric solids are addressed for the 2-D case. An efficient analytical method to deal with the nearly singular integrals in the piezoelectric BIE is developed to accurately compute these integrals in the piezoelectric BEM, no matter how close the source point is to the element of integration. Promising BEM results with only a small number of elements are obtained for thin films and coatings with the thickness-to-length ratio as small as 10−6, which is sufficient for modeling many thin piezoelectric films as used in smart materials and micro-electro-mechanical systems.  相似文献   

8.
Weiwei Sun  Jiming Wu 《Computing》2005,75(4):297-309
The quadrature formulae of Newton-Cotes type for the computation of hypersingular integrals with second order singularity on interval are discussed. We improve the estimates given by Linz [22] such that the Newton-Cotes method is valid with less restriction on the location of the singular point. We also present a new Newton-Cotes formula which is applicable when the singular point coincides with a mesh point, while the classical Newton-Cotes method fails in this case. Error analysis for the new formula is given. Numerical experiments are presented to validate the analysis.  相似文献   

9.
A boundary element method for transient convective diffusion phenomena presented in Part I of the paper is extended to two dimensional problems. We introduce a series representation for the transient convective kernel and perform a time integration for the double integrals to evaluate coefficients of the time-discrete boundary integral equation. The time-integrated kernels are evaluated for the linear, quadratic and quartic time interpolation functions utilized in the paper. Then, linear, quadratic and quartic boundary elements as well as bi-linear, bi-quadratic and bi-quartic volume cells are introduced to ensure proper resolution in space for the two-dimensional formulation. Due to the singular nature of the transient convective diffusion kernels, integration of the kernels over the boundary elements and volume cells requires a considerable effort to maintain a desired level of accuracy. We define influence domains due to time-integrated and time-delayed kernels arising for the surface and volume integrals, respectively. Note that the kernel influences are extremely localized due to the convective nature of the kernels, thus, the surface and volume integrations are performed only within these domains of influence. The localization of the kernels becomes more prominent as the Peclet number of the flow increases. Due to increasing sparsity of the global matrix, iterative solvers become the primary choice for the convective diffusion problems.  相似文献   

10.
《Computers & Structures》2002,80(3-4):339-347
The main objective of this paper is to present a general three-dimensional boundary element methodology for solving transient dynamic elastoplastic problems. The elastostatic fundamental solution is used in writing the integral representation and this creates in addition to the surface integrals, volume integrals due to inertia and inelasticity. Thus, an interior discretization in addition to the usual surface discretization is necessary. Isoparametric linear quadrilateral elements are used for the surface discretization and isoparametric linear hexahedra for the interior discretization. Advanced numerical integration techniques for singular and nearly singular integrals are employed. Houbolt's step-by-step numerical time integration algorithm is used to provide the dynamic response. Numerical examples are presented to illustrate the method and demonstrate its accuracy.  相似文献   

11.
A new fast multipole boundary element method (BEM) is presented in this paper for solving large-scale two dimensional (2D) acoustic problems based on the improved Burton–Miller formulation. This algorithm has several important improvements. The fast multipole BEM employs the improved Burton–Miller formulation, and successfully overcomes the non-uniqueness difficulty associated with the conventional BEM for exterior acoustic problems. The improved Burton–Miller formulation contains only weakly singular integrals, and avoids the numerical difficulties associated to the evaluation of the hypersingular integral, it leads to the numerical implementations more efficient and straightforward. Furthermore, the fast multipole method (FMM) and the approximate inverse preconditioned generalized minimum residual method (GMRES) iterative solver are adopted to greatly improve the overall computational efficiency. The numerical examples with Neumann boundary conditions are presented that clearly demonstrate the accuracy and efficiency of the developed fast multipole BEM for solving large-scale 2D acoustic problems in a wide range of frequencies.  相似文献   

12.
A new boundary element formulation for Reissner's plate bending is presented. This form of BEM has an advantage in that the bending stresses on the boundary can be calculated directly from the numerical solution, avoiding the use of tangential derivatives of displacement for finding plate bending stresses on the boundary. The effectiveness of the approach is also discussed through some test examples. In the present BEM formulation, the singular orders of the two kernels are the same as those in the standard BEM formulation of a Reissner's type plate—one of which is logarithmic singular and the other is 1/r singular.  相似文献   

13.
In 1926 E. Trefftz published a paper about a variational formulation which utilizes boundary integrals. Almost half a century later researchers became interested again in the ideas of Trefftz when the potential advantage of the Trefftz-method for an efficient use in numerical application on a computer was recognized. The concept of Trefftz can be used both for finite element and boundary element applications. A crucial ingredient of the Trefftz- method is a set of linearly independent trial functions which a priori satisfy the governing differential equations under consideration. In this paper an overview of some recent developments to construct trial functions for the Trefftz-method in a systematic manner is given. Using different types of approximation functions (singular or non-singular) we can obtain very accurate finite element and boundary element algorithms.  相似文献   

14.
Summary Boundary element methodologies for the determination of the response of inelastic two-and three-dimensional solids and structures as well as beams and flexural plates to dynamic loads are briefly presented and critically discussed. Elastoplastic and viscoplastic material behaviour in the framework of small deformation theories are considered. These methodologies can be separated into four main categories: those which employ the elastodynamic fundamental solution in their formulation, those which employ the elastostatic fundamental solution in their formulation, those which combine boundary and finite elements for the creation of an efficient hybrid scheme and those representing special boundary element techniques. The first category, in addition to the boundary discretization, requires a discretization of those parts of the interior domain expected to become inelastic, while the second category a discretization of the whole interior domain, unless the inertial domain integrals are transformed by the dual reciprocity technique into boundary ones, in which case only the inelastic parts of the domain have to be discretized. The third category employs finite elements for one part of the structure and boundary elements for its remaining part in an effort to combine the advantages of both methods. Finally, the fourth category includes special boundary element techniques for inelastic beams and plates and symmetric boundary element formulations. The discretized equations of motion in all the above methodologies are solved by efficient step-by-step time integration algorithms. Numerical examples involving two-and three-dimensional solids and structures and flexural plates are presented to illustrate all these methodologies and demonstrate their advantages. Finally, directions for future research in the area are suggested.  相似文献   

15.
This paper presents a general 2.5D coupled finite element–boundary element methodology for the computation of the dynamic interaction between a layered soil and structures with a longitudinally invariant geometry, such as railway tracks, roads, tunnels, dams, and pipelines. The classical 2.5D finite element method is combined with a novel 2.5D boundary element method. A regularized 2.5D boundary integral equation is derived that avoids the evaluation of singular traction integrals. The 2.5D Green’s functions of a layered halfspace, computed with the direct stiffness method, are used in a boundary element method formulation. This avoids meshing of the free surface and the layer interfaces with boundary elements and effectively reduces the computational efforts and storage requirements. The proposed technique is applied to four examples: a road on the surface of a halfspace, a tunnel embedded in a layered halfspace, a dike on a halfspace and a vibration isolating screen in the soil.  相似文献   

16.
An indirect boundary element formulation based on unknown physical values, defined only at the nodes (vertices) of a boundary discretization of a linear elastic continuum, is introduced. As an adaptation of this general framework, a linear displacement discontinuity density distribution using a flat triangular boundary discretization is considered. A unified element integration methodology based on the continuation principle is introduced to handle regular as well as near-singular and singular integrals. The boundary functions that form the basis of the integration methodology are derived and tabulated in the appendix for linear displacement discontinuity densities. The integration of the boundary functions is performed numerically using an adaptive algorithm which ensures a specified numerical accuracy. The applications include verification examples which have closed-form analytical solutions as well as practical problems arising in rock engineering. The node-centric displacement discontinuity method is shown to be numerically efficient and robust for such problems.  相似文献   

17.
The successful implementation of the Galerkin Boundary Element Method hinges on the accurate and effective quadrature of the influence coefficients. For parabolic boundary integral operators quadrature must be performed in space and time where integrals have singularities when source- and evaluation points coincide. For problems where the surface is fixed, the time integration can be performed analytically, but for moving geometries numerical quadrature in space and time must be used. For this case a set of transformations is derived that render the singular space–time integrals into smooth integrals that can be treated with standard tensor product Gauss quadrature rules. This methodology can be applied to the heat equation and to transient Stokes flow.  相似文献   

18.
A new completely analytical integral algorithm is proposed and applied to the evaluation of nearly singular integrals in boundary element method (BEM) for two-dimensional anisotropic potential problems. The boundary layer effect and thin body effect are dealt with. The completely analytical integral formulas are suitable for the linear and non-isoparametric quadratic elements. The present algorithm applies the analytical formulas to treat nearly singular integrals. The potentials and fluxes at the interior points very close to boundary are evaluated. The unknown potentials and fluxes at boundary nodes for thin body problems with the thickness-to-length ratios from 1E−1 to 1E−8 are accurately calculated by the present algorithm. Numerical examples on heat conduction demonstrate that the present algorithm can effectively handle nearly singular integrals occurring in boundary layer effect and thin body effect in BEM. Furthermore, the present linear BEM is especially accurate and efficient for the numerical analysis of thin body problems.  相似文献   

19.
This paper reports a multidomain boundary element formulation for direct calculation of stress intensity factors in rectilinear anisotropic plates subjected to arbitrary in-plane loading. The √r displacement and 1/√r traction behaviour near a crack tip is correctly represented in crack elements and transition elements. The use of these singular boundary elements is investigated for mode I and mixed mode crack problems.  相似文献   

20.
This paper is concerned with a boundary element formulation and its numerical implementation for the nonlinear transient heat conduction problems with temperature-dependent material properties. By using the Kirchhoff transformation for the material properties a set of pseudo-linear integral equations is obtained in space and time for the fully three-dimensional nonlinear problems under consideration. The resulting boundary integral equations are solved by means of the usual boundary element method. Emphasis is placed on the numerical solution procedure employing constant elements with respect to time. It is shown that in this case there is no need to evaluate the domain integrals resulting from the nonlinearity of the problem. Finally, the powerful usefulness of the proposed method is demonstrated through the numerical computation of several sample problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号