首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Finite Volume Particle Method (FVPM) is a meshless method based on a definition of interparticle area which is closely analogous to cell face area in the classical finite volume method. In previous work, the interparticle area has been computed by numerical integration, which is a source of error and is extremely expensive. We show that if the particle weight or kernel function is defined as a discontinuous top-hat function, the particle interaction vectors may be evaluated exactly and efficiently. The new formulation reduces overall computational time by a factor between 6.4 and 8.2. In numerical experiments on a viscous flow with an analytical solution, the method converges under all conditions. Significantly, in contrast with standard FVPM and SPH, error depends on particle size but not on particle overlap (as long as the computational domain is completely covered by particles). The new method is shown to be superior to standard FVPM for shock tube flow and inviscid steady transonic flow. In benchmarking on a viscous multiphase flow application, FVPM with exact interparticle area is shown to be competitive with a mesh-based volume-of-fluid solver in terms of computational time required to resolve the structure of an interface.  相似文献   

2.
Semi-analytic solutions of the Navier-Stokes equations are calculated for two-dimensional, symmetrical, viscous incompressible flow past a circular cylinder. The stream and vorticity functions are expanded in the finite Fourier series and then substituted in the Navier-Stokes equations. This led to a system of coupled parabolic partial differential equations which are solved numerically. More terms of the series are required as Reynolds number increases and the present calculations were terminated at Reynolds number 600 with 60 terms of Fourier series. The results are compared with similar calculations and experimental data for Reynolds numbers 60, 100, 200, 500, 550 and 600. At the termination of the calculations for Reynolds numbers 60 and 100, the separation angle, the wake length, the drag coefficient, and the vorticity distributions around the surface were very close to their steady-state values. A secondary vortex appeared on the surface of the cylinder in the case of Reynolds numbers 500, 550 and 600. The wake length, the drag coefficient and the separation angle differ slightly at a given instant in the case of Reynolds numbers 500, 550 and 600.  相似文献   

3.
Numerical solutions of the steady, incompressible, viscous flow past a circular cylinder are presented for Reynolds numbers R ranging from 1 to 100. The governing Navier-Stokes equations in the form of a single, fourth order differential equation for stream function and the boundary conditions are replaced by an equivalent variational principle. The numerical method is based on a finite element approximation of this principle. The resulting non-linear system is solved by the Newton-Raphson process. The pressure field is obtained from a finite element solution of the Poisson equation once the stream function is known. The results are compared with those determined by other numerical techniques and experiments. In particular, the discussion is concerned with the development of the closed wake with Reynolds number, and the tendency of R ≥ 40 flow toward instability.  相似文献   

4.
In this paper a novel method for simulating unsteady incompressible viscous flow over a moving boundary is described. The numerical model is based on a 2D Navier–Stokes incompressible flow in artificial compressibility formulation with Arbitrary Lagrangian Eulerian approach for moving grid and dual time stepping approach for time accurate discretization. A higher order unstructured finite volume scheme, based on a Harten Lax and van Leer with Contact (HLLC) type Riemann solver for convective fluxes, developed for steady incompressible flow in artificial compressibility formulation by Mandal and Iyer (AIAA paper 2009-3541), is extended to solve unsteady flows over moving boundary. Viscous fluxes are discretized in a central differencing manner based on Coirier’s diamond path. An algorithm based on interpolation with radial basis functions is used for grid movements. The present numerical scheme is validated for an unsteady channel flow with a moving indentation. The present numerical results are found to agree well with experimental results reported in literature.  相似文献   

5.
In this paper, an unstructured Chimera mesh method is used to compute incompressible flow around a rotating body. To implement the pressure correction algorithm on unstructured overlapping sub-grids, a novel interpolation scheme for pressure correction is proposed. This indirect interpolation scheme can ensure a tight coupling of pressure between sub-domains. A moving-mesh finite volume approach is used to treat the rotating sub-domain and the governing equations are formulated in an inertial reference frame. Since the mesh that surrounds the rotating body undergoes only solid body rotation and the background mesh remains stationary, no mesh deformation is encountered in the computation. As a benefit from the utilization of an inertial frame, tensorial transformation for velocity is not needed. Three numerical simulations are successfully performed. They include flow over a fixed circular cylinder, flow over a rotating circular cylinder and flow over a rotating elliptic cylinder. These numerical examples demonstrate the capability of the current scheme in handling moving boundaries. The numerical results are in good agreement with experimental and computational data in literature.  相似文献   

6.
This paper studies a two-dimensional incompressible viscous flow past a rotating cylinder with cross flow oscillation using a finite element method based on the characteristic based split (CBS) algorithm to solve governing equations including full Navier–Stokes and continuity equations. Dynamic unstructured triangular grid is used employing lineal and torsional spring analogy which is coupled with the solver by an Arbitrary Lagrangian–Eulerian (ALE) formulation. After verifying the accuracy of the numerical code, simulations are conducted for the flow past a rotating cylinder with cross flow oscillation at moderate Reynolds numbers of 50, 100, and 200 considering different non-dimensional rotational speeds based on the free-stream velocity in the range 0–2.5, and various oscillating amplitudes and frequencies. Effects of the oscillation and rotation of the cylinder on the vortex shedding both in lock-on and non-lock-on regions, the mean drag and lift coefficients, and the Strouhal number are investigated in detail. It is found that similar to the fixed cylinder beyond a critical non-dimensional rotational speed the vortex shedding is highly suppressed. In addition, by increasing the rotational speed of the cylinder, the lift coefficient increases while decreasing the drag coefficient. However, in the vortex lock-on region both the lift and the drag coefficients increase significantly.  相似文献   

7.
A. Burbeau  P. Sagaut   《Computers & Fluids》2002,31(8):867-889
This paper is devoted to the simulation of viscous compressible flows with high-order accurate discontinuous Galerkin methods on bidimensional unstructured meshes. The formulation for the solution of the Navier–Stokes equations is due to Oden et al. [An hp-adaptive discontinuous finite element method for computational fluid dynamics. PhD thesis, The University of Texas at Austin, 1997; J Comput Phys 1998;146:491–519]. It involves a weak imposition of continuity conditions on the state variables and on fluxes across interelement boundaries. It does not make use of any auxiliary variables and then the cost for the implementation is reasonable. The method is coupled with a limiting procedure recently developed by the authors to suppress oscillations near large gradients. The limiter is totally free of problem dependence and maintains the convergence order for errors measured in the L1-norm. This paper presents detailed numerical results of a viscous compressible flow past a circular cylinder at a Reynolds number of 100 for the cases of subsonic and supersonic regimes. The proposed simulations suggest that the method is very robust and is able to produce very accurate results on unstructured meshes.  相似文献   

8.
The flow around an impulsively started elliptic cylinder at 0, 30, 45 and 90° incidence is investigated. The fluid is viscous, incompressible and its flow is governed by the Navier-Stokes equations. Semi-analytical solutions are calculated by solving numerically the system of coupled partial differential equations which are obtained by substituting the expanded finite Fourier Series of the stream and vorticity functions in the Navier-Stokes equations. The symmetrical solutions are presented for Reynolds number 200 and eccentricity 0.809 and 0.943 in terms of patterns of streamlines, lines of constant vorticity, pressure and vorticity distributions around the surface, drag coefficient and wake length at 0 and 90° and compared with the experimental results. A comparison of the calculations has been made for Reynolds number 100 and eccentricity 0.648 with different number of terms at 90°. A Kármán vortex street develops for Reynolds numbers 200 and 60 at 30 and 45° incidence and the solutions are presented in terms of various characteristics including Strouhal number. The vanishing of wall-shear does not denote separation in any meaningful sense in various cases.  相似文献   

9.
Numerical manifold method (NMM) application to direct numerical solution for unsteady incompressible viscous flow Navier-Stokes (N-S) equations was discussed in this paper, and numerical manifold schemes for N-S equations were derived based on Galerkin weighted residuals method as well. Mixed covers with linear polynomial function for velocity and constant function for pressure was employed in finite element cover system. The patch test demonstrated that mixed covers manifold elements meet the stability conditions and can be applied to solve N-S equations coupled velocity and pressure variables directly. The numerical schemes with mixed covers have also been proved to be unconditionally stable. As applications, mixed cover 4-node rectangular manifold element has been used to simulate the unsteady incompressible viscous flow in typical driven cavity and flow around a square cylinder in a horizontal channel. High accurate results obtained from much less calculational variables and very large time steps are in very good agreement with the compact finite difference solutions from very fine element meshes and very less time steps in references. Numerical tests illustrate that NMM is an effective and high order accurate numerical method for unsteady incompressible viscous flow N-S equations.  相似文献   

10.
Transient wake flow patterns and dynamic forces acting on a rotating spherical particle with non-uniform surface blowing are studied numerically for Reynolds numbers up to 300 and dimensionless angular velocities up to Ω=1. This range of Reynolds numbers includes the three distinct wake regimes i.e., the steady axisymmetric, the steady non-symmetrical and the unsteady with vortex shedding. The Navier–Stokes equations for an incompressible viscous flow are solved by a finite volume method in a three-dimensional, time accurate manner. An interesting feature associated with particle rotation and surface blowing is that they can affect the near wake structure in such a way that unsteady three-dimensional wake flow with vortex shedding develops at lower Reynolds numbers as compared to flow over a solid sphere in the absence of these effects and thus, vortex shedding occurs even at Re=200. Global properties, such as the lift and drag coefficients, and the Strouhal number are also significantly affected. It is shown that the present data for the average lift and drag coefficients correlate well with:
CL/(1+Ω)3.6=0.11
CD(1+20VS)0.2/(1+Ω)Re/1000=24(1+Re2/3/6)/Re
where VS is the average surface blowing velocity normalized by the free stream velocity.  相似文献   

11.
In this paper, two mesh-free methods, i.e., least square-based finite difference (LSFD) and radial basis function-based finite difference (RBFFD), are compared numerically in terms of their accuracy and efficiency. These two mesh-free methods are based on different approximation schemes, that is, the least square approximation and radial basis function (RBF) approximation. The two mesh-free methods exhibit very different behaviors in many ways. In this study, we examine the performance of the two methods by applying them to two example problems: Poisson equation and two-dimensional incompressible viscous lid-driven cavity flow, and some interesting findings are observed.  相似文献   

12.
The development of a computational model for the simulation of three-dimensional unsteady incompressible viscous fluid flows with moving boundaries is presented. The numerical model is based upon the solution of the Navier–Stokes equations on unstructured meshes using the artificial compressibility approach. An ALE formulation is adopted and the equations are discretized using a cell vertex finite volume method. The formulation ensures the satisfaction of the geometric conservation law when the mesh is allowed to move. An implicit time discretization is adopted and a dual time approach is employed. Explicit relaxation is used for the sub-iterations, with multigrid acceleration. For moving geometries, the mesh is deformed by adopting a spring analogy, combined with a wall distance function approach. The numerical procedure is validated on a standard problem and is then used for the simulation of flow over a flexible fish-like body.  相似文献   

13.
This paper investigates the applicability of the stencil-adaptive finite difference method for the simulation of two-dimensional unsteady incompressible viscous flows with curved boundary. The adaptive stencil refinement algorithm has been proven to be able to continuously adapt the stencil resolution according to the gradient of flow parameter of interest [Ding H, Shu C. A stencil adaptive algorithm for finite difference solution of incompressible viscous flows. J Comput Phys 2006;214:397-420], which facilitates the saving of the computational efforts. On the other hand, the capability of the domain-free discretization technique in dealing with the curved boundary provides a great flexibility for the finite difference scheme on the Cartesian grid. Here, we show that their combination makes it possible to simulate the unsteady incompressible flow with curved boundary on a dynamically changed grid. The methods are validated by simulating steady and unsteady incompressible viscous flows over a stationary circular cylinder.  相似文献   

14.
The incompressible time independent Navier-Stokes equations for two-dimensional laminar flow through arrays of parallel circular cylinders are solved numerically. A square mesh in the physical field is used to effect a finite difference iterative procedure for solving the elliptic type partial differential equations. Results which exhibit the main characteristics of this type of fluid flow are given for certain regular arrays at cylinder Reynolds numbers of 1 and 20.  相似文献   

15.
Results of calculations of the steady and unsteady flows past a circular cylinder which is rotating with constant angular velocity and translating with constant linear velocity are presented. The motion is assumed to be two-dimensional and to be governed by the Navier-Stokes equations for incompressible fluids. For the unsteady flow, the cylinder is started impulsively from rest and it is found that for low Reynolds numbers the flow approaches a steady state after a large enough time. Detailed results are given for the development of the flow with time for Reynolds numbers 5 and 20 based on the diameter of the cylinder. For comparison purposes the corresponding steady flow problem has been solved. The calculated values of the steady-state lift, drag and moment coefficients from the two methods are found to be in good agreement. Notable, however, are the discrepancies between these results and other recent numerical solutions to the steady-state Navier-Stokes equations. Some unsteady results are also given for the higher Reynolds numbers of 60, 100 and 200. In these cases the flow does not tend to be a steady state but develops a periodic pattern of vortex shedding.  相似文献   

16.
The computation of incompressible three-dimensional viscous flow is discussed. A new physically consistent method is presented for the reconstruction for velocity fluxes which arise from the mass and momentum balance discrete equations. This closure method for fluxes allows the use of a cell-centered grid in which velocity and pressure unknowns share the same location, while circumventing the occurrence of spurious pressure modes. The method is validated on several benchmark problems which include steady laminar flow predictions on a two-dimensional cartesian (lid driven 2D cavity) or curvilinear grid (circular cylinder problem at Re = 40), unsteady three-dimensional laminar flow predictions on a cartesian grid (parallelopipedic lid driven cavity) and unsteady two-dimensional turbulent flow predictions on a curvilinear grid (vortex shedding past a square cylinder at Re = 22,000).  相似文献   

17.
《Computers & Fluids》2005,34(4-5):491-506
In this paper, we review the development of the so-called local discontinuous Galerkin method for linearized incompressible fluid flow. This is a stable, high-order accurate and locally conservative finite element method whose approximate solution is discontinuous across inter-element boundaries; this property renders the method ideally suited for hp-adaptivity. In the context of the Oseen problem, we present the method and discuss its stability and convergence properties. We also display numerical experiments that show that the method behaves well for a wide range of Reynolds numbers.  相似文献   

18.
We study the buoyancy-induced interpenetration of two immiscible fluids in a tilted channel by a two-phase lattice Boltzmann method using a non-ideal gas equation of state well-suited for two incompressible fluids. The method is simple, elegant and easily parallelizable. After first validating the code for simulating Rayleigh–Taylor instabilities in a unstably-stratified flow, we applied the code to simulate the buoyancy-induced mixing in a tilted channel at various Atwood numbers, Reynolds numbers, tilt angles, and surface tension parameters. The effects of these parameters are studied in terms of the flow structures, front velocities, and velocity profiles. For one set of parameters, comparisons have also been made with results of a finite volume method. The present results are seen to agree well with those of a finite volume method in the interior of the flow; however near the boundary there is some discrepancy.  相似文献   

19.
A fractional step method for the solution of steady and unsteady incompressible Navier–Stokes equations is outlined. The method is based on a finite-volume formulation and uses the pressure in the cell center and the mass fluxes across the faces of each cell as dependent variables. Implicit treatment of convective and viscous terms in the momentum equations enables the numerical stability restrictions to be relaxed. The linearization error in the implicit solution of momentum equations is reduced by using three subiterations in order to achieve second order temporal accuracy for time-accurate calculations. In spatial discretizations of the momentum equations, a high-order (third and fifth) flux-difference splitting for the convective terms and a second-order central difference for the viscous terms are used. The resulting algebraic equations are solved with a line-relaxation scheme which allows the use of large time step. A four color ZEBRA scheme is employed after the line-relaxation procedure in the solution of the Poisson equation for pressure. This procedure is applied to a Couette flow problem using a distorted computational grid to show that the method minimizes grid effects. Additional benchmark cases include the unsteady laminar flow over a circular cylinder for Reynolds numbers of 200, and a 3-D, steady, turbulent wingtip vortex wake propagation study. The solution algorithm does a very good job in resolving the vortex core when fifth-order upwind differencing and a modified production term in the Baldwin–Barth one-equation turbulence model are used with adequate grid resolution.  相似文献   

20.
The subject of this paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil. A solid elastically supported airfoil with two degrees of freedom, which can rotate around the elastic axis and oscillate in the vertical direction, is considered. The numerical simulation consists of the stabilized finite element treatment of the Reynolds averaged Navier–Stokes (RANS) approach, the use of turbulence models and the solution of the system of ordinary differential equations describing the airfoil motion. The time dependent computational domain and a moving grid are taken into account with the aid of the Arbitrary Lagrangian–Eulerian (ALE) formulation of the Navier–Stokes equations. High Reynolds numbers up to 106 require to use a suitable stabilization of the finite element discretization and the application of a turbulence model. We apply the algebraic turbulence model, which was designed by Baldwin and Lomax and modified by Rostand. The developed technique was tested by the simulation of flow past a flat rigid plate and the computation of pressure distribution around a rotating airfoil with prescribed motion. Finally, the method was applied to the simulation of flow induced airfoil vibrations. This research was supported under the Grant No. IAA200760613 of the Grant Agency of Academy of Sciences of the Czech Republic. The research of M. Feistauer was partly supported by the research project MSM 0021620839 financed by the Ministry of Education of the Czech Republic and the research of L. Dubcová was partly supported by the grant No. 48607 of the Grant Agency of the Charles University. The authors acknowledge the support of these institutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号