首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
应用单层神经网络设计多变量自适应模糊控制器   总被引:2,自引:0,他引:2  
濮卫兴  陈来九 《控制与决策》1996,11(3):346-350,357
提出一种应用单层神经网络设计多变量自适应模糊控制器的方法。应用单层神经网络可以学习多变量模糊控制规则中的未知参数,还可由它来实现多变量模糊推理过程。该方法能解决多变量模糊控制中普遍存在的规则获取困难和难于实现实时自适应等问题。仿真试验表明,所设计的多变量模糊控制器不仅实时性好,而且可得到满意的控制效果。  相似文献   

2.
This paper develops a representation of multi-model based controllers using artificial intelligence techniques. These techniques will be graph theory, neural networks, genetic algorithms, and fuzzy logic. Thus, graph theory is used to describe in a formal and concise way the switching mechanism between the various plant parameterizations of the switched system. Moreover, the interpretation of multi-model controllers in an artificial intelligence frame will allow the application of each specific technique to the design of improved multi-model based controllers. The obtained artificial intelligence-based multi-model controllers are compared with classic single model-based ones. It is shown through simulation examples that a transient response improvement can be achieved by using multi-estimation based techniques. Furthermore, a method for synthesizing multi-model-based neural network controllers from already designed single model-based ones is presented, extending the applicability of this kind of technique to a more general type of controller. Also, some applications of genetic algorithms and fuzzy logic to multi-model controller design are proposed. In particular, the mutation operation from genetic algorithms inspires a robustness test, which consists of a random modification of the estimates which is used to select the one leading to the better identification performance towards parameterizing online the adaptive controller. Such a test is useful for plants operating in a noisy environment. The proposed robustness test improves the selection of the plant model used to parameterize the adaptive controller in comparison to classic multi-model schemes where the controller parameterization choice is basically taken based on the identification accuracy of each model. Moreover, the fuzzy logic approach suggests new ideas to the design of multi-estimation structures, which can be applied to a broad variety of adaptive controllers such as robotic manipulator controller design.  相似文献   

3.
This paper presents a new method for learning a fuzzy logic controller automatically. A reinforcement learning technique is applied to a multilayer neural network model of a fuzzy logic controller. The proposed self-learning fuzzy logic control that uses the genetic algorithm through reinforcement learning architecture, called a genetic reinforcement fuzzy logic controller, can also learn fuzzy logic control rules even when only weak information such as a binary target of “success” or “failure” signal is available. In this paper, the adaptive heuristic critic algorithm of Barto et al. (1987) is extended to include a priori control knowledge of human operators. It is shown that the system can solve more concretely a fairly difficult control learning problem. Also demonstrated is the feasibility of the method when applied to a cart-pole balancing problem via digital simulations  相似文献   

4.
基于生物免疫系统的计算智能近年来正逐渐成为一个研究热点.针对模糊神经网络控制器难于设计的问题,提出了一种免疫进化算法用于径向基函数模糊神经网络控制器参数的优化设计.首先将控制器参数进行编码表示成个体,并由若干随机个体组成初始群体;然后模拟生物适应性免疫应答过程,通过扩展操作在群体中较优秀个体的小邻域内进行局部搜索,同时利用突变操作在较差个体的大邻域内搜索;最后将设计的控制器用于控制倒立摆系统,仿真结果验证了该控制器的有效性.  相似文献   

5.
In this paper a modified discrete adaptive control system with neural estimator and neural controller is presented. The structure of the adaptive controller is based on the model presented by Etxebarria (Etxebarria V. Adaptive control of discrete systems using neural networks. IEE Proc. Control Theory Application, Vol. 141, No. 4, July, 1995) where the stability of the control procedure is proved. The Widrow–Hoff procedure of learning and the DARMA model is used for identifying and adjustment of neural network parameters, applied to adaptive control of discrete systems. In this paper the procedure of Etxebarria is modified. The learning rate of the neural network is improved and accelerated using the PD, PI and PID input controllers for input neurons. The effect of adding a momentum term (the past record of the learning) to the learning rule of the neural network is studied. The results are compared and discussed using the examples of Etxebarria and two other case studies. The procedure is extended to multi-input multi-output systems and cases studied are simulated.  相似文献   

6.
This paper discusses the design of neural network and fuzzy logic controllers using genetic algorithms, for real-time control of flows in sewerage networks. The soft controllers operate in a critical control range, with a simple set-point strategy governing “easy” cases. The genetic algorithm designs controllers and set-points by repeated application of a simulator. A comparison between neural network, fuzzy logic and benchmark controller performance is presented. Global and local control strategies are compared. Methods to reduce execution time of the genetic algorithm, including the use of a Tabu algorithm for training data selection, are also discussed. The results indicate that local control is superior to global control, and that the genetic algorithm design of soft controllers is feasible even for complex flow systems of a realistic scale. Neural network and fuzzy logic controllers have comparable performance, although neural networks can be successfully optimised more consistently.  相似文献   

7.
由于粉末物料的浓相输送系统存在严重的非线性和时变性,故要想建立其准确数学模型难度非常大,本文提出了使用模糊神经网络控制系统,并对于模糊控制规则由Elman神经网络联想记忆后提取,它不但可以获得最佳控制规则,而且响应速度快并能够进行在线进行规则的修正。经仿真实验,该控制器能够对粉末物料流量在一定范围内进行协调优化时实控制。  相似文献   

8.
为了提高直接甲醇燃料电池(DMFC)的发电性能,采用自适应神经模糊推理技术(FGA-ANFIS)对电池的工作温度进行建模与控制.首先,基于实验的输入输出数据建立了DMFC电堆温度的自适应神经模糊辨识模型,避开了DMFC电堆的内部复杂性.然后,将训练好的网络模型作为DMFC控制系统的参考模型,采用一种改进的模糊遗传算法对神经模糊控制器的参数和模糊规则进行自适应调整.最后,通过仿真.将所提出的算法与非线性PID和传统模糊算法进行比较,结果表明所设计的神经模糊控制器具有较好的性能.  相似文献   

9.
基于快速算法的模糊神经网络自适应控制   总被引:1,自引:1,他引:0  
裴鑫  李平  孙丽敏 《控制工程》2006,13(4):361-363
针对过程控制中被控对象常具有非线性、不确定性及参数时变等复杂因素,而难以建立精确的数学模型的情况,提出了一种基于快速学习算法的模糊神经网络自适应预测控制方案。该方案用神经网络作辨识器,模糊神经网络作控制器来实现非线性系统的自适应预测控制。为了克服传统的梯度下降法收敛速度慢、容易陷入局部极小值的缺点,该方案采用递推最小二乘法训练模糊神经网络。仿真结果表明,该方案可以实现模糊控制和神经网络的优势互补,对不确定非线性系统具有很好的控制效果。  相似文献   

10.
The paper considers the neuro-fuzzy position control of multi-finger robot hand in tele-operation system—an active master–slave hand system (MSHS) for demining. Recently, fuzzy control systems utilizing artificial intelligent techniques are also being actively investigated in robotic area. Neural network with their powerful learning capability are being sought as the basis for many adaptive control systems where on-line adaptation can be implemented. Fuzzy logic on the other hand has been proved to be rather popular in many control system applications providing a rule-base like structure. In this paper, the design and optimization process of fuzzy position controller is supported by learning techniques derived from neural network where a radial basis function (RBF) neural network is implemented to learn fuzzy rules and membership functions with predictor of recurrent neural network (RNN) model. The results of experiment show that based on the predictive capability of RNN model neuro-fuzzy controller with good adaptation and robustness capability can be designed.  相似文献   

11.
Although many neural network controllers have been proposed, we still have to tune several parameters of neural networks in order to obtain a better learning performance in practical applications. Our tracking method provides a new aspect of this tuning of neural network parameters. It has been applied to adaptive and learning-type neural network direct controllers, and an adaptive-type neural network feed-forward feed-back controller. This work applied it to a learning-type neural network feed-forward feed-back controller. Simulation results confirmed its usefulness, and we discuss a transformation of the track on a 2D plane to one-dimensional values.  相似文献   

12.
用B样条神经网络设计自适应模糊控制器*   总被引:6,自引:1,他引:5  
本文提出一种可用于设计自适应模糊控制器的模化B样条神经网络,并给出了合适的训练算法。由于这种网络在每次训练时仅需对少量权重进行调整,因此构成的模糊控制器学习速率快,可应用于过程控制中。本文最后以电厂中过热汽温的控制为例,说明本文的设计方法是有效的。  相似文献   

13.
Control system implementation is one of the major difficulties in rehabilitation robot design. A newly developed adaptive impedance controller based on evolutionary dynamic fuzzy neural network (EDRFNN) is presented, where the desired impedance between robot and impaired limb can be regulated in real time according to the impaired limb??s physical recovery condition. Firstly, the impaired limb??s damping and stiffness parameters for evaluating its physical recovery condition are online estimated by using a slide average least squares (SALS)identification algorithm. Then, hybrid learning algorithms for EDRFNN impedance controller are proposed, which comprise genetic algorithm (GA), hybrid evolutionary programming (HEP) and dynamic back-propagation (BP) learning algorithm. GA and HEP are used to off-line optimize DRFNN parameters so as to get suboptimal impedance control parameters. Dynamic BP learning algorithm is further online fine-tuned based on the error gradient descent method. Moreover, the convergence of a closed loop system is proven using the discrete-type Lyapunov function to guarantee the global convergence of tracking error. Finally, simulation results show that the proposed controller provides good dynamic control performance and robustness with regard to the change of the impaired limb??s physical condition.  相似文献   

14.
This study presents a novel controller by employing fuzzy-sliding mode control and genetic algorithms equipped with a modified evolutionary direction operator for optimal position control with an induction motor. Applying the sliding mode control technique provides the proposed controller with many advantages, such as a small overshoot, tiny steady-state error, rapid response, and adaptability to equipment parameters variation and external disturbance. The genetic algorithm optimizes the parameters of fuzzy membership functions defined according to expert experience, and its supplementary modified evolutionary direction operator determines improved search directions. The proposed approach is applied to a position servo system. Computational results indicate that the proposed controller exhibits excellent performance with all the advantages mentioned above. Moreover, the proposed controller is immune to the chattering problem that typically affects general controllers.  相似文献   

15.
In robot learning control, the learning space for executing general motions of multijoint robot manipulators is quite large. Consequently, for most learning schemes, the learning controllers are used as subordinates to conventional controllers or the learning process needs to be repeated each time a new trajectory is encountered, although learning controllers are considered to be capable of generalization. In this paper, we propose an approach for larger learning space coverage in robot learning control. In this approach, a new structure for learning control is proposed to organize information storage via effective memory management. The proposed structure is motivated by the concept of human motor program and consists mainly of a fuzzy system and a cerebellar model articulation controller (CMAC)-type neural network. The fuzzy system is used for governing a number of sampled motions in a class of motions. The CMAC-type neural network is used to generalize the parameters of the fuzzy system, which are appropriate for the governing of the sampled motions, to deal with the whole class of motions. Under this design, in some sense the qualitative fuzzy rules in the fuzzy system are generalized by the CMAC-type neural network and then a larger learning space can be covered. Therefore, the learning effort is dramatically reduced in dealing with a wide range of robot motions, while the learning process is performed only once. Simulations emulating ball carrying under various conditions are presented to demonstrate the effectiveness of the proposed approach  相似文献   

16.
A neural network inverse dynamics controller with adjustable weights is compared with a computed-torque type adaptive controller. Lyapunov stability techniques, usually applied to adaptive systems, are used to derive a globally asymptotically stable adaptation law for a single-layer neural network controller that bears similarities to the well-known delta rule for neural networks. This alternative learning rule allows the learning rates of each connection weight to be individually adjusted to give faster convergence. The role of persistently exciting inputs in ensuring parameter convergence, often mentioned in the context of adaptive systems, is emphasized in relation to the convergence of neural network weights. A coupled, compound pendulum system is used to develop inverse dynamics controllers based on adaptive and neural network techniques. Adaptation performance is compared for a model-based adaptive controller and a simple neural network utilizing both delta-rule learning and the alternative adaptation law.  相似文献   

17.
脉冲GTAW熔池动态过程模糊神经网络建模与控制   总被引:6,自引:1,他引:6  
展示了模糊推理与神经网络结合在脉冲GTAW熔池动态过程智能控制中的应用研究 结果.建立了脉冲GTAW平板对接动态过程特征:正反面熔池的最大宽度、长度与面积等参数 的神经网络模型,基于实验数据采用模糊辨识方法提取焊接过程的模糊控制规则,进而设计了 具有自学习适应能力的模糊神经网络控制器.建立了脉冲GTAW熔池动态过程智能控制系统, 焊接实验验证了所设计的模糊神经网络控制器具有智能控制效果.  相似文献   

18.
为实现航空发动机模拟式电子控制器(EEC)的数字化设计,以其低压压气机导流叶片调节通道为主要研究对象,提出一种模糊神经网络PID控制器,将模糊控制、神经网络、PID控制相结合,利用模糊控制专家经验优势和神经网络的自学习、自适应能力,优化PID控制参数,实现控制性能提升。仿真结果显示,基于模糊神经网络的PID控制器控制性能有较大提高,具有比常规神经网络PID控制器更小的超调量和更好的抗干扰性;适用于定常系统和非定常系统,具有更好的自适应性与鲁棒性;可应用于航空发动机模拟式电子控制器(EEC)的数字化设计。  相似文献   

19.
吴超霞  董宁 《计算机仿真》2006,23(12):153-155,182
基于神经网络的结构,结合模糊控制的理论,提出了一种模糊神经网络在线学习自适应结构,针对模糊神经网络控制器一般存在着在线修正权值计算量大。权值过度修正容易导致系统振荡等缺点,采用变结构变速率的学习方法对网络结构参数权值进行修正。将参数调整后的控制器模型应用于伺服系统中,并与传统的ITAE三阶无静差最优控制进行比较,仿真试验表明该控制器不但能够提高系统的控制品质,同时可以消除输出力矩对被控对象的扰动,具有很好的控制效果。  相似文献   

20.
Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward controllers such as gravity compensator, Coriolis/centrifugal force compensator and friction compensators have been built in the controller. Generally, it causes heavy computational load when calculating the compensating value within a short sampling period. In this paper, integrated recurrent neural networks are applied as a feedforward controller for PUMA560 manipulator. The feedforward controller works instead of gravity and Coriolis/centrifugal force compensators. In the learning process of the neural network by using back propagation algorithm, the learning coefficient and gain of sigmoid function are tuned intuitively and empirically according to teaching signals. The tuning is complicated because it is being conducted by trial and error. Especially, when the scale of teaching signal is large, the problem becomes crucial. To cope with the problem which concerns the learning performance, a simple and adaptive learning technique for large scale teaching signals is proposed. The learning techniques and control effectiveness are evaluated through simulations using the dynamic model of PUMA560 manipulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号