首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 85 毫秒
1.
杨泽民 《软件》2013,(11):71-72,92
近些年来,计算机技术迅猛发展带动信息技术的兴起,数据挖掘技术被广泛地应用到各个领域当中。这个新兴的领域为数据挖掘技术提供了最为活跃的算法,即关联规则算法,其能够对于大量的数据和信息进行处理,通过将繁琐的项集从数据库中找出来,经过整理之后,将项集之间的关联关系建立起来,从中挖掘出有价值的数据信息,以在一定程度上满足不同领域的需要。本文针对数据挖掘中关联规则算法进行研究。  相似文献   

2.
随着时代的进步和科学技术的发展,数据资源越来越多,但是信息贫乏的困境却依然无法摆脱,于是如今开始大力对新的数据分析方法和工具进行查找,从海量数据中将有用知识给提取出来。针对如今Apriori算法效率的瓶颈,就需要提出策略来改进本算法。本文简要分析了基于数据挖掘关联规则Apriori算法的优化对策,希望可以提供一些有价值的参考意见。  相似文献   

3.
基于关联规则数据挖掘Apriori算法的研究与应用   总被引:2,自引:0,他引:2  
目前在我国,对数据挖掘技术的研究与应用并不是很广泛.大多数数据库只能实现数据的录入、查询、统计等较低层次的功能,无法发现数据中存在的各种有用的信息.基于关联规则的数据挖掘主要用于发现数据集中项目之间的联系.以超市购物为例,目的在于找出顾客所购买商品之间的内在关联.利用Apriori算法的先验原理,减少Apriori算法在搜索频繁项目集时对候选式的搜索次数,并在对顾客购买的商品模型进行抽象的基础上,利用vc++与access数据库实现的算法系统,对所购买的商品之间的内在关联进行模拟分析.根据得到的数据分析出置信度较高的几种商品,通过对这些商品集中摆放,可以提高收益,从而证明改进的Apriori的实用性.  相似文献   

4.
数据挖掘的关联规则建立与算法改进   总被引:4,自引:0,他引:4  
关联规则作为一种数据挖掘的工具,能够发现数据项集之间有趣的关联。在关联规则的算法中,Apriori算法是其中的关键算法之一。本文提出利用频繁K-项集导出关联规则后得到的有用信息指导频繁(K 1)一项集产生的方法,通过矩阵、事务剪枝和分区查找有效的提高了Apriori算法的效率。  相似文献   

5.
关联规则挖掘可以发现大量数据中项集之间相关联系的知识,这些重要信息是关于这些数据的整体特征描述以及对其发展趋势的预测,对决策的制定有着重要的参考价值。主要介绍了数据挖掘和关联规则挖掘的概念,并对数据挖掘经典算法Apriori的进行了分析与改进,算法的改进可以有效地减少对数据库的扫描次数,使挖掘的效率更好更快。  相似文献   

6.
宋钰 《福建电脑》2009,25(7):94-94
销售数据分析是关联规则数据挖掘算法的主要应用领域之一。文章基于关联规则的算法原理,提出了一种对于超市销售数据关联分析方法,可以作为超市数据挖掘的一种基本算法。  相似文献   

7.
论文首先简要地介绍关联规则的概念、基本原理及分类。然后详细地讨论了Apriori算法的基本原理,同时也指出了Apriori算法的一些缺陷。针对这些缺陷提出了解决方法,列举了几种改进算法。最后概述了关联规则数据挖掘的发展趋势。  相似文献   

8.
数据挖掘中关联规则算法的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目前,人们已经提出了许多挖掘关联规则的算法及其变型,其中最著名的是Apriori算法,但传统的算法效率太低。为了解决这些问题,本文提出了一种快速更新的关联挖掘算法。  相似文献   

9.
Apriori算法是关联规则挖掘中的经典算法。通过对Apriori算法的基本思想和性能的研究分析,提出了一种基于垂直事务列表的树形结构的挖掘算法,减少了候选频繁项集的数量,提高了挖掘算法的效率。实验结果表明新算法具有良好的性能。  相似文献   

10.
关联规则算法综述   总被引:1,自引:0,他引:1  
介绍了关联规则的概念及挖掘的过程,以Apriori算法为例,阐明了算法思想及其优化方法,描述了关联规则在社会生活领域的应用。  相似文献   

11.
互联网技术在带给我们一个信息爆炸时代的同时,也极大地增加了从浩瀚数据堆里寻找有用知识的困难程度。面对不断拓展的数据规模,对海量信息的搜索、管理以及实时处理能力将面临严峻的挑战。文章主要介绍基于Apriori算法关联规则的具体应用。  相似文献   

12.
深入研究关联规则算法, 针对Apriori算法瓶颈问题提出了一种改进算法, 该算法在构建向量矩阵的基础上, 只需要扫描一次事务数据库, 通过优化连接和剪枝, 提高了算法的运行效率. 研究和实验表明, 改进后的算法在大规模的事务数据库中, 较Apriori算法有明显的优势.  相似文献   

13.
一种基于约束的关联规则挖掘算法   总被引:1,自引:1,他引:0  
基于约束的关联规则挖掘是一种重要的关联挖掘,能按照用户给出的条件来实行有针对性的挖掘。大多数此类算法仅处理具有一种约束的挖掘,因而其应用受到一定程度的限制。提出一种新的基于约束的关联规则挖掘算法MCAL,它同时处理两种类型的约束:非单调性约束和单调性约束。算法包括3个步骤:第一步,挖掘当前数据集的频繁1项集;第二,应用约束的性质和有效剪枝策略来寻找约束点,同时生成频繁项的条件数据库;最后,递归地应用前面两步寻找条件数据库中频繁项的约束点,以生成满足约束的全部频繁项集。通过实验对比,无论从运行时间还是可扩展性来说,本算法均达到较好的效果。  相似文献   

14.
基于Apriori算法的水平加权关联规则挖掘   总被引:19,自引:2,他引:19  
关联规则挖掘可以发现大量数据中项集之间有趣的关联或相关联系,并已在许多领域得到了广泛的应用。目前业界已经提出了许多发现关联规则的算法,这些算法都认为每个数据对规则的重要性相同。但在实际应用中,用户会比较倾向于自己最感兴趣或认为最重要的那部分项目,因此有必要加强这些项目对规则的影响,同时减弱另一些用户兴趣不大或认为不重要的项目对规则的影响。为此,论文提出了水平加权关联规则的问题,并结合Apriori算法,加以改进,给出了关于该问题的解决方案及有效算法New_Apriori。  相似文献   

15.
在约束关联规则挖掘过程中,影响交互的制约因素是挖掘算法的执行时间。为了提高挖掘过程的交互性,文章提出一种基于两阶段的约束关联规则挖掘算法。算法利用已挖掘的关联规则,实现约束关联规则的挖掘过程。在算法实现的过程中对关联规则集存储结构进行了优化,并扩展了类SQL查询语句。实验结果表明,由于在约束条件挖掘的过程中不需要再对数据库进行挖掘处理,节省了大量的用户时间,因此算法是有效的。  相似文献   

16.
基于Apriori算法改进的关联规则提取算法   总被引:9,自引:2,他引:9  
通过对Apriori算法的基本思想和性能的研究分析,认为Apriori算法存在一些不足。并且根据这些不足提出了相应的改进算法对Apriori算法进行优化,从而得到一种改进的Apriori算法,与原算法相比运算效率大大提高。  相似文献   

17.
一种划分多值属性的关联规则挖掘算法   总被引:1,自引:0,他引:1  
提出了一种新的划分方法求拐点,可以根据数据的实际分开布将数量型定义划分为多个定性概念,这种划分符合数据分布的自然性并有利于模式的解释,从而最终得到概括的、易理解的、有效的关联规则。  相似文献   

18.
在分布式关联规则挖掘中,首先需要解决分布式环境下的聚类分区问题。该文基于CURE的工作原理,提出了D-CURE算法。实验证明,D-CURE算法可以很好地解决在分布式环境下的聚类分区问题。  相似文献   

19.
基于兴趣度的关联规则挖掘算法   总被引:4,自引:0,他引:4  
马建庆  钟亦平  张世永 《计算机工程》2006,32(17):121-122,149
分析了Apriori核心算法,举例说明了其设计思想上的不足,并重新定义了关联规则形式和引进了兴趣度的概念。主要定义了合理的兴趣度,即基于可信度和支持度方差的兴趣度InterestR=[(CR-SRH)/4]^*(CR+SRH),并因此而设计了基于此兴趣度定义的关联规则挖掘算法,并对算法做了适当的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号