首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
The crystal structure of the ternary compound Ag2SiS3 was determined on the basis of X-ray powder diffraction. The compound belongs to a new structure type, space group P21/c, a = 0.66709(1), b = 0.66567(2), c = 1.31748(3) nm, and β = 118.658(1)°. Ag2SiS3 contains isolated [Si2S6] anionic units consisting of pairs of edge-shared tetrahedra. The Ag atoms are situated in the interstices formed by these fragments.  相似文献   

2.
Crystal structures from two new phosphates Na4NiFe(PO4)3 (I) and Na2Ni2Fe(PO4)3 (II) have been determined by single crystal X-ray diffraction analysis. Compound (I) crystallizes in a rhombohedral system (S. G: R-3c, Z = 6, a = 8.7350(9) Å, c = 21.643(4) Å, R1 = 0.041, wR2=0.120). Compound (II) crystallizes in a monoclinic system (S. G: C2/c, Z = 4, a = 11.729(7) Å, b = 12.433(5) Å, c = 6.431(2) Å, β = 113.66(4)°, R1 = 0.043, wR2=0.111). The three-dimensional structure of (I) is closely related to the Nasicon structural type, consisting of corner sharing [(Ni/Fe)O6] octahedra and [PO4] tetrahedra forming [NiFe(PO4)3]4+ units which align in chains along the c-axis. The Na+ cations fill up trigonal antiprismatic sites within these chains. The crystal structure of (II) belongs to the alluaudite type. Its open framework results from [Ni2O10] units of edge-sharing [NiO6] octahedra, which alternate with [FeO6] octahedra that form infinite chains. Coordination of these chains yields two distinct tunnels in which site Na+.The magnetization data of compound (I) reveal antiferromagnetic (AFM) interactions by the onset of deviations from a Curie-Weiss behaviour at low temperature as confirmed by Mössbauer measurements performed at 4.2 K. The corresponding temperature dependence of the reciprocal susceptibility χ−1 follows a typical Curie-Weiss behaviour for T > 105 K. A canted AFM state is proposed for compound (II) below 46 K with a field-induced magnetic transition at H ≈ 19 kOe, revealed in the hysteresis loop measured at 5 K. This transition is most probably associated with a spin-flop transition.  相似文献   

3.
Eu3+-activated Li2Zn2(MoO4)3 multiwavelength excited red-emitting phosphors were synthesized via a solid state reaction. The structure and photoluminescence characteristics were investigated by X-ray powder diffraction and fluorescent spectrophotometry, respectively. The excitation spectrum included a strong broadband ranging from 250 to 350 nm and some sharp peaks at 363, 384, 395, 465, and 533 nm, which matchs the radiations of near-UV or blue light-emitting diodes chip well. Upon excitation either of near-UV or blue even green light, the intense red emission with 615 nm peak can be observed, which is ascribed to the 5D0-7F2 transition of Eu3+ ions. The chromaticity coordinates (x = 0.65, y = 0.34) of the as-obtained phosphor is very close to the National Television Standard Committee standard values (x = 0.67, y = 0.33). All these characteristics suggest that Eu3+-doped Li2Zn2(MoO4)3 wavelength-conversion material to be suitable candidate red component for phosphor-converted white light-emitting diodes.  相似文献   

4.
In this paper, the magnetic properties and magnetocaloric effect (MCE) of La0.7(Ca1−xAgx)0.3MnO3 (x = 0, 0.1, 0.2, 0.7, and 1) powder samples are reported. Our polycrystalline compounds were synthesized using the solid state reaction method at high temperature. Magnetization measurements versus temperature showed that all our samples exhibited a paramagnetic to ferromagnetic transition with decreasing temperature. The Curie temperature, TC, has been found to increase from ∼250 K for x = 0-270 K for x = 1. Ag doping weakens the first order phase transition, and at higher Ag doping, the phase transition is of second order. For the La0.7(Ca0.27Ag0.03)MnO3 composition, the maxima of the magnetic entropy changes from the applied magnetic field (ΔSM) at 2 and 5 T are about 4.5 and 7.75 J/kg K, respectively, at the Curie temperature of ∼263 K. The relative cooling power (RCP) values without hysteresis loss are about 102 and 271 J/kg for the applied fields of 2 and 5 T, respectively. Due to the large ΔSM, large RCP, and high Curie temperature, La0.7(Ca0.27Ag0.03)MnO3 is promising for application in potential magnetic refrigeration near room temperature.  相似文献   

5.
6.
The structural, magnetic, and 155Gd Mössbauer spectral properties of the 1/1 approximant Ag42In42Gd16 to an icosahedral quasicrystal Ag-In-Gd are reported. Based on dc magnetic susceptibility measurements, it is shown that the studied compound develops no long-range magnetic order in the temperature range 1.8-300 K. The dc zero-field-cooled and field-cooled susceptibility data indicate that the 1/1 approximant Ag42In42Gd16 is a spin glasss with freezing temperature Tf = 3.6(1) K. This is further confirmed by the analysis of the frequency dependence of Tf using the Vogel-Fulcher law and the dynamic scaling behavior near Tf. It is argued that the spin freezing process is a true equilibrium phase transition rather than a nonequilibrium phenomenon. The large frustration parameter of the studied compound indicates that it belongs to a category of strongly geometrically frustrated magnets. The 155Gd Mössbauer spectra of the 1/1 approximant Ag42In42Gd16 confirm that the Gd spins are frozen at 1.5 K and are fluctuating at 4.6 K. The Debye temperature of the 1/1 approximant Ag42In42Gd16 is 200(1) K.  相似文献   

7.
Sr2CeO4 blue phosphor has been prepared by the solid-state reaction method. The X-ray diffraction (XRD) study confirms the structure of the system to be orthorhombic. High resolution electron transmission microscopy reveals that Sr2CeO4 prepared by the solid state reaction method is composed of elongated spherical structures of length ∼0.2-0.6 μm and width ∼90-150 nm. The excitation spectrum shows a broad band which peaks at 275 nm. The emission spectrum shows a broad band which peaks at 467 nm when excited at 275 nm. The emission band is assigned to the energy transfer between the molecular orbital of the ligand and charge transfer (CT) state of the Ce4+ ion. The Commission International de l’Eclairage (CIE) co-ordinates are x = 0.15, and y = 0.23. The nonlinear absorption behavior of Sr2CeO4 has been investigated using the open aperture z-scan technique. The calculated effective two-photon absorption coefficient shows that the Sr2CeO4 blue phosphor is a promising optical limiting material.  相似文献   

8.
The electrical properties of the (Na0.6Ag0.4)2PbP2O7 compound were studied using the complex impedance spectroscopy in the temperature range (502-667 K). Grain interior, grain boundary and electrode-material interface contributions to the electrical response are identified by the analysis of complex plan diagrams. The imaginary part of the modulus at several temperatures shows a double relaxation peaks, furthermore suggesting the presence of grains and grain boundaries in the sample. An analysis of the dielectric constants ?′, ?″ and loss tangent tan(δ) with frequency shows a distribution of relaxation times. The dc conductivity of the material is thermally activated with an activation energy about 0.8 eV which is in the vicinity of the that obtained from tan(δ) (E = 0.7 eV) and modulus (Em = 0.68 eV) studies.  相似文献   

9.
A novel dibarium cadmium diborate, Ba2Cd(BO3)2, has been successfully synthesized by standard solid-state reaction. Large sheet-like crystal with size up to 20 mm × 15 mm × 0.7 mm has been obtained using top-seed solution growth method. Ba2Cd(BO3)2 crystallizes in the monoclinic space group C2/m with a = 9.6305(4) Å, b = 5.3626(3) Å, c = 6.5236(2) Å, β = 118.079(3)°, Z = 2. The crystal structure is composed of isolated [BO3] triangles, [CdO6] octahedra and [BaO9] polyhedra. CdO6 are vertex-connected with six BO3 to form infinite [Cd(BO3)2] layers extending in (0 0 1) plane, and two rows of Ba atoms closely occupy two side of [Cd(BO3)2] layers to forming stoichiometric sheets. IR and transmittance spectrum of Ba2Cd(BO3)2 were reported.  相似文献   

10.
11.
The copper borate Li2Pb2CuB4O10 has been synthesized in air by the standard solid-state reaction at temperature in the range 550-650 °C and the structure of Li2Pb2CuB4O10 was determined by single-crystal X-ray diffraction. Li2Pb2CuB4O10 crystallizes in the monoclinic space group C2/c (no. 15) with a = 16.8419(12), b = 4.7895(4), c = 13.8976(10) Å, and β = 125.3620(10)°, V = 914.22(12) Å3, and Z = 4, as determined by single-crystal X-ray diffraction. The Li2Pb2CuB4O10 structure exhibits isolated units of stoichiometry [CuB4O10]6− that are built from CuO4 distorted square planes and triangular BO3 groups. The IR spectroscopy and thermal analysis investigations of Li2Pb2CuB4O10 are also presented.  相似文献   

12.
Calcium yttrium tetrametagermanates Y2CaGe4O12 doped with Er3+ and Er3+/Yb3+ reveal upconversion emission in visible spectral range under near-infrared excitation, λex = 980 nm. For the solid solution ErxY2−xCaGe4O12 concentration dependencies for the green and red lines of the visible emission around 526 nm (2H11/2 → 4I15/2), 545 nm (4S3/2 → 4I15/2) and 670 nm (4F9/2 → 4I15/2) show the optimal value for the sample x = 0.2. The power dependence of the visible luminescence measured at room temperature in the low-power limit indicates two-photon upconversion process. Direct intensification of the upconversion emission signals has been achieved by ytterbium sensitizing. The other upconversion excitation mechanism in Y2CaGe4O12:Er3+ is discussed for an 808 nm incident laser irradiation. A scheme of excitation and emission routes involving ground/excited state absorption, energy transfer upconversion, nonradiative multiphonon relaxation processes in trivalent lanthanide ions in Y2CaGe4O12:Er3+ and Y2CaGe4O12:Er3+, Yb3+ has been proposed. Conditions for visible emission occurrence under quasi-resonance λex = 1064 nm excitation depending on pump power values are considered. In the low-power regime only near-infrared emission caused by the transition 4I13/2 → 4I15/2 in erbium ions has been detected.  相似文献   

13.
Semiconducting n-CdIn2Se4 thin films have been deposited on to the amorphous and fluorine doped tin oxide (FTO) coated glass substrates using spray pyrolysis technique. The influence of solution concentration on to the photoelectrochemical, structural, morphological, compositional, thermal and electrical properties has been investigated. The PEC characterization shows that the short circuit current (Isc) and open circuit voltage (Voc) are at their optimum values (Isc = 1.04 mA and Voc = 409 mV) at the optimized precursor concentration (12.5 mM). The structural analysis shows the films are polycrystalline in nature having cubic crystal structure. The average crystallite size determined was in the range of 50-66 nm. Surface morphology and film composition have been analyzed using scanning electron microscopy and energy dispersive analysis by X-rays, respectively. The addition of solution concentration induces a decrease in the electrical resistivity of CdIn2Se4 films up to 12.5 mM solution concentration. The type of semiconductor was examined from thermoelectric power measurement.  相似文献   

14.
Dysprosium-activated Sr3RE2(BO3)4 (RE = Y, La, Gd) phosphors were synthesized by a high temperature solid-state reaction method. The phase uniformity of the phosphors was characterized by X-ray powder diffraction (XRD) and the luminescence characteristics were investigated. The excitation spectra at 575 nm emission show strong spectral bands in the region of 300-500 nm. The emission spectra of the phosphors with 365 nm excitation show three bands centered at 484 nm, 575 nm and 680 nm, which originate from the transitions of 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 of Dy3+, respectively. The effect of Dy3+ concentration on the emission intensity of the phosphors was investigated. The fluorescence decay curves for 4F9/2 → 6H13/2 excited at 365 nm and monitored at λem of 575 nm were measured. The decay times decreased slowly with increasing Dy3+ doping concentration due to a trap capturing to resonance fluorescence transfer of the activated ions and due to the exchange interactions between activated ion pairs. In order to determine the type of interaction between activated ions, the concentration dependence curves (lg(I/x) versus lg x) of Sr3RE2(BO3)4:Dy3+ (RE = Y, La, Gd) were plotted. The concentration quenching mechanism of the 4F9/2 → 6H13/2 (575 nm) transition of Dy3+ is the d-d interaction. All results indicate these phosphors are promising white-color luminescent materials.  相似文献   

15.
A series of Ce3+ doped novel borate phosphors MSr4(BO3)3 (M = Li or Na) were successfully synthesized by traditional solid-state reaction. The crystal structures and the phase purities of samples were characterized by powder X-ray diffraction. The optimal concentrations of dopant Ce3+ ions in compound MSr4(BO3)3 (M = Li or Na) were determined through the measurements of photoluminescence spectra of phosphors. Ce3+ doped phosphors MSr4(BO3)3 (M = Li or Na) show strong broad band absorption in UV spectral region and bright blue emission under the excitation of 345 nm light. In addition, the temperature dependences of emission spectra of M1+xSr4−2xCex(BO3)3 (M = Li or Na) phosphors with optimal composition x = 0.05 for Li and x = 0.09 for Na excited under 355 nm pulse laser were also investigated. The experimental results indicate that the M1+xSr4−2xCex(BO3)3 (M = Li or Na) phosphors are promising blue emitting phosphors pumped by UV light.  相似文献   

16.
A new framework compound, [Hg4As2](InBr3.5As0.5) (1), has been prepared by the solid-state reaction of Hg2Br2 with elemental In and As at 450 °C. Compound 1 crystallizes in the space group P63/mmc of the Hexagonal system with two formula units in a cell: a = b = 7.7408(6) Å, c = 12.5350(19) Å, V = 650.47(12) Å3. The crystal structure of 1 features a novel 3D framework, [Hg4As2]2+ with tridymite topology. The optical properties were investigated in terms of the diffuse reflectance and infrared spectra. The electronic band structure along with density of states (DOS) calculated by DFT method indicates that the present compound is semiconductor, and the optical absorption is mainly originated from the charge transitions from Br-4p and As-4p states to Hg-6s and In-5p states.  相似文献   

17.
This paper reports the growth and spectral properties of Nd3+:Na2Gd4(MoO4)7 crystals. An Nd3+:Na2Gd4(MoO4)7 crystal with dimensions of Ø20 × 25 mm3 has been grown by the Czochralski method. The spectroscopic properties of Nd3+:Na2Gd4(MoO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The polarized absorption cross-sections of Nd3+:Na2Gd4(MoO4)7 crystal are 4.25 × 10−20 cm2 with full width at half maximum (FWHM) of 14.6 nm for the π-polarization and 2.87 × 10−20 cm2 with FWHM of 16.2 nm for the σ-polarization, respectively. The emission cross-sections are 10.0 × 10−20 cm2 at 1060 nm for π-polarization and 13.6 × 10−20 cm2 at 1067 nm for σ-polarization, respectively. The fluorescence quantum efficiency has been estimated to be 90.0%. Nd3+:Na2Gd4(MoO4)7 crystal may be considered as a potential laser gain medium for the diode laser pumping.  相似文献   

18.
The behavior of dielectric and microwave properties against sintering temperature has been carried out on CaO-SiO2-B2O3 ceramic matrix composites with ZrO2 addition. The results indicated that ZrO2 addition was advantageous to improve the dielectric and microwave properties. X-ray diffraction (XRD) patterns show that the major crystalline β-CaSiO3 and a little SiO2 phase existed at the temperature ranging from 950 °C to 1050 °C. At 0.5 wt% ZrO2, CaO-SiO2-B2O3 ceramic matrix composites sintered at 1000 °C possess good dielectric properties: ?r = 5.85, tan δ = 1.59 × 10−4 (1 MHz) and excellent microwave properties: ?r = 5.52, Q · f = 28,487 GHz (11.11 GHz). The permittivity of Zr-doped CaO-SiO2-B2O3 ceramic matrix composites exhibited very little temperature dependence, which was less than ±2% over the temperature range of −50 to 150 °C. Moreover, the ZrO2-doped CaO-SiO2-B2O3 ceramic matrix composites have low permittivity below 5.5 over a wide frequency range from 20 Hz to 1 MHz.  相似文献   

19.
Polarization-dependent absorption characterization of Cu2ZnSiQ4 (Q = S, Se) quaternary single crystal compound semiconductors were carried out in the temperature range of 10-300 K. The absorption measurements were performed on the as grown basal plane with the normal along [2 1 0] and the axis c parallel to the long edge of the crystal platelet. A significant shift towards lower energy was observed in the absorption spectra of Ec polarization with respect to those corresponding to Ec polarization. A comprehensive analysis of the absorption spectra revealed that the absorption edges of the studied crystals are indirect allowed transitions. A schematic representation of the plausible assignments for the observed near band edge optical transitions for Cu2ZnSiQ4 was proposed. The variation of the indirect transition energies with temperature were analyzed by Varshni and Bose-Einstein expressions. The parameters that describe the temperature dependence of the indirect transition energies with different polarizations were evaluated and discussed.  相似文献   

20.
A simple method to directly synthesize stable and crystalline pure phase La(OH)3 nanorods, with a diameter of around 15 nm and lengths in the range of 120-200 nm, was developed using cationic surfactant (cetyltrimethylammonium bromide, CTAB). The obtained La(OH)3 nanorods can be successfully converted to La2O2CO3 and La2O3 nanorods via calcination under appropriate conditions. Analytical methods such as X-ray diffraction (XRD) spectra, Fourier transformed infrared (FTIR) spectrum, differential scanning calorimetry and thermogravimetric analysis (DSC-TGA), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM) were employed to characterize the morphology and microstructure of the final products. The results reveal that La(OH)3 nanorods were shape-preserved and transformed to La2O2CO3 nanorods at 400 °C for 2 h and to La2O3 nanorods at 800 °C for 2 h, respectively. TEM images indicate that the as-obtained La2O2CO3 and La2O3 entirely consist of uniform nanorods in high yield with diameters of about 15 nm and 23 nm, lengths of 200-300 nm and 300-500 nm, respectively. The formation mechanism of the La(OH)3, La2O2CO3 and La2O3 nanorods was investigated. Room-temperature photoluminescence (RTPL) properties were investigated under the excitation of 275 nm. The 5D3 → 7Fj (j = 2-6) emission peaks at the wavelength below 500 nm were found in the RTPL spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号