首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 602 samples of cereals, consisting of organically and conventionally produced barley, oats and wheat, were collected at harvest during 2002–2004 in Norway. Organic and conventional cereals were sampled in comparable numbers regarding cereal species, localisation and harvest time, and analysed for Fusarium mould and mycotoxins. Fusarium infestation and mycotoxin content were dependent on cereal species and varied year-by-year. However, in all cereal species, Fusarium infestation and levels of important mycotoxins were significantly lower when grown organically than conventionally. Concerning the most toxic trichothecenes, HT-2 and T-2 toxin, lower concentrations were found in organic oats and barley. Wheat was not contaminated by HT-2 and T-2, but lower concentrations of deoxynivalenol (DON) and moniliformin (MON) were found when organically produced. For mycotoxins considered to constitute the main risk to humans and animals in Norwegian cereals, i.e. HT-2 in oats and DON in oats and wheat, the median figures (mean levels in brackets) were as follows: HT-2 in organic and conventional oats were <20 (80) and 62 (117) µg/kg, DON in organic and conventional oats were 24 (114) and 36 (426) µg/kg, and DON in organic and conventional wheat were 29 (86) and 51 (170) µg/kg, respectively. Concentrations of HT-2 and T-2 in the samples were strongly correlated (r = 0.94). Other mycotoxins did not show a significant correlation to each other. Both HT-2 and T-2 concentrations were significantly correlated with infestation of F. langsethiae (r = 0.65 and r = 0.60, respectively). Concentrations of DON were significantly correlated with F. graminearum infestation (r = 0.61). Furthermore, nivalenol (NIV) was significantly correlated with infestation of F. poae (r = 0.55) and MON with F. avenaceum (r = 0.37). As lower Fusarium infestation and mycotoxin levels were found in organic cereals, factors related to agricultural practice may reduce the risk of contamination with Fusarium mycotoxins. Studies of these issues will be presented separately.  相似文献   

2.
The Fusarium mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T-2 frequently contaminate grain crops in Middle and Eastern Europe. In this survey, 116 cereal samples (maize, wheat, barley and oat) were examined for DON, ZEN and T-2 mycotoxins. Samples were collected from different areas in two Hungarian regions (North and South Transdanubia). The method of analysis was indirect competitive ELISA. Maize was the most contaminated grain regarding DON (86%), ZEN (41%) and T-2 (55%) toxins. The average results of the deoxynivalenol and zearalenone tests of maize proved to be significantly higher than those of barley or oat. DON was the most represented Fusarium mycotoxin followed by T-2 and ZEN. The examination of these mycotoxins would be necessary at a larger scale as to re-evaluate permissible levels, so increase of the monitoring programme would be advisable for the future.  相似文献   

3.
A total of 602 samples of organically and conventionally grown barley, oats and wheat was collected at grain harvest during 2002–2004 in Norway. Organic and conventional samples were comparable pairs regarding cereal species, growing site and harvest time, and were analysed for Fusarium mould and mycotoxins. Agronomic and climatic factors explained 10–30% of the variation in Fusarium species and mycotoxins. Significantly lower Fusarium infestation and concentrations of important mycotoxins were found in the organic cereals. The mycotoxins deoxynivalenol (DON) and HT-2 toxin (HT-2) constitute the main risk for human and animal health in Norwegian cereals. The impacts of various agronomic and climatic factors on DON and HT-2 as well as on their main producers F. graminearum and F. langsethiae and on total Fusarium were tested by multivariate statistics. Crop rotation with non-cereals was found to reduce all investigated characteristics significantly – mycotoxin concentrations as well as various Fusarium infestations. No use of mineral fertilisers and herbicides was also found to decrease F. graminearum, whereas lodged fields increased the occurrence of this species. No use of herbicides was also found to decrease F. langsethiae, but for this species the occurrence was lower in lodged fields. Total Fusarium infestation was decreased with no use of fungicides or mineral fertilisers, and with crop rotation, as well as by using herbicides and increased by lodged fields. Clay and to some extent silty soils seemed to reduce F. graminearum in comparison with sandy soils. Concerning climate factors, low temperature before grain harvest was found to increase DON; and high air humidity before harvest to increase HT-2. F. graminearum was negatively correlated with precipitation in July but correlated with air humidity before harvest. F. langsethiae was correlated with temperature in July. Total Fusarium increased with increasing precipitation in July. Organic cereal farmers have fewer cereal intense rotations than conventional farmers. Further, organic farmers do not apply mineral fertiliser or pesticides (fungicides, herbicides or insecticides), and have less problem with lodged fields. The study showed that these agronomic factors were related to the infestation of Fusarium species and the concentration of mycotoxins. Hence, it is reasonable to conclude that farming system (organic versus conventional) impacts Fusarium infestation, and that organic management tends to reduce Fusarium and mycotoxins. However, Fusarium infestation and mycotoxin concentrations may be influenced by a range of factors not studied here, such as local topography and more local climate, as well as cereal species and variety.  相似文献   

4.
The quality of harvested wheat grain can deteriorate markedly during the post-harvest management stages. Biotic factors, such as grain type and ripeness, coupled with the prevailing abiotic factors, such as water content and temperature, and also preservative concentration will influence the safe storage life and the level of contamination with mycotoxins. These mycotoxins include deoxynivalenol (DON) produced pre-harvest and zearalenone (ZEA) produced post-harvest by Fusarium graminearum and Fusarium poae, respectively, ochratoxin (OTA) produced by Penicillium verrucosum post-harvest in cool damp northern European climates, and perhaps T-2 and HT-2 toxins produced by Fusarium langsethiae. This review presents recent data on the relationship between dry matter losses caused by F. graminearum under different environmental regimes (water activities, temperatures) and the level of contamination with DON. This is important as poor post-harvest drying and storage management may exacerbate DON contamination already present pre-harvest. It is thus critical to relate the environmental factors in stored wheat grain during storage, especially of intergranular relative humidity (RH) and temperature, to safe storage periods without spoilage or risk from increased DON contamination. The growth/no growth and DON/no DON (F. graminearum) and OTA/no toxin production (P. verrucosum) have been used to build a model with a simple interface to link temperature and RH values to the potential risk level which may allow growth or toxin production. This paper also considers the use of modified atmospheres, preservatives and biocontrol to minimise DON and OTA in moist wheat grain. These approaches together with clear monitoring criteria and hygiene could contribute to better post-harvest management of stored temperate cereals and ensure that mycotoxin contamination is minimised during this key phase in the food/feed chain.  相似文献   

5.
This study aimed to investigate mycotoxin contamination of cereal grain commodities for feed and food production in North Western Europe during the last two decades, including trends over time and co-occurrence between toxins, and to assess possible effects of climate on the presence of mycotoxins. For these aims, analytical results related to mycotoxin contamination of cereal grain commodities, collected in the course of national monitoring programmes in Finland, Sweden, Norway and the Netherlands during a 20-year period, were gathered. Historical observational weather data, including daily relative humidity, rainfall and temperature, were obtained from each of these four countries. In total 6382 records, referring to individual sample results for mycotoxin concentrations (one or more toxins) in cereal grains were available. Most records referred to wheat, barley, maize and oats. The most frequently analysed mycotoxins were deoxynivalenol, 3-acetyl-deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin and zearalenone. Deoxynivalenol had the highest overall incidence of 46%, and was mainly found in wheat, maize and oats. Mycotoxins that showed co-occurrence were: deoxynivalenol and 3-acetyl-deoxynivalenol in oats; deoxynivalenol and zearalenone in maize and wheat; and T-2 toxin and HT-2 toxin in oats. The presence of both deoxynivalenol and zearalenone in wheat increased with higher temperatures, relative humidity and rainfall during cultivation, but the presence of nivalenol was negatively associated with most of these climatic factors. The same holds for both nivalenol and deoxynivalenol in oats. This implies that climatic conditions that are conducive for one toxin may have a decreasing effect on the other. The presence of HT-2 toxin in oats showed a slight decreasing trends over time, but significant trends for other toxins showed an increasing presence during the last two decades. It is therefore useful to continue monitoring of mycotoxins. Obtained results can be used for development of predictive models for presence of mycotoxins in cereal grains.  相似文献   

6.
A total of 602 samples of organically and conventionally grown barley, oats and wheat was collected at grain harvest during 2002-2004 in Norway. Organic and conventional samples were comparable pairs regarding cereal species, growing site and harvest time, and were analysed for Fusarium mould and mycotoxins. Agronomic and climatic factors explained 10-30% of the variation in Fusarium species and mycotoxins. Significantly lower Fusarium infestation and concentrations of important mycotoxins were found in the organic cereals. The mycotoxins deoxynivalenol (DON) and HT-2 toxin (HT-2) constitute the main risk for human and animal health in Norwegian cereals. The impacts of various agronomic and climatic factors on DON and HT-2 as well as on their main producers F. graminearum and F. langsethiae and on total Fusarium were tested by multivariate statistics. Crop rotation with non-cereals was found to reduce all investigated characteristics significantly--mycotoxin concentrations as well as various Fusarium infestations. No use of mineral fertilisers and herbicides was also found to decrease F. graminearum, whereas lodged fields increased the occurrence of this species. No use of herbicides was also found to decrease F. langsethiae, but for this species the occurrence was lower in lodged fields. Total Fusarium infestation was decreased with no use of fungicides or mineral fertilisers, and with crop rotation, as well as by using herbicides and increased by lodged fields. Clay and to some extent silty soils seemed to reduce F. graminearum in comparison with sandy soils. Concerning climate factors, low temperature before grain harvest was found to increase DON; and high air humidity before harvest to increase HT-2. F. graminearum was negatively correlated with precipitation in July but correlated with air humidity before harvest. F. langsethiae was correlated with temperature in July. Total Fusarium increased with increasing precipitation in July. Organic cereal farmers have fewer cereal intense rotations than conventional farmers. Further, organic farmers do not apply mineral fertiliser or pesticides (fungicides, herbicides or insecticides), and have less problem with lodged fields. The study showed that these agronomic factors were related to the infestation of Fusarium species and the concentration of mycotoxins. Hence, it is reasonable to conclude that farming system (organic versus conventional) impacts Fusarium infestation, and that organic management tends to reduce Fusarium and mycotoxins. However, Fusarium infestation and mycotoxin concentrations may be influenced by a range of factors not studied here, such as local topography and more local climate, as well as cereal species and variety.  相似文献   

7.
The EU has set maximum limits for the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON). The maximum permitted level decreases from unprocessed wheat, through intermediary products, e.g. flour, to finished products such as bakery goods and breakfast cereals. It is, therefore, important to understand the effects of processing on the mycotoxin distribution in mill fractions. Between 2004 and 2007, samples were taken at commercial flour mills at various points in the milling process and analysed for trichothecenes and ZON. Samples with a range of mycotoxin concentrations harvested in 2004 and 2005 were processed in a pilot mill and the mycotoxins in the different mill fractions quantified. In the commercial samples, DON was the predominant mycotoxin with highest levels detected in the bran fraction. Analysis of the pilot mill fractions identified a significant difference between the two years and between mycotoxins. The proportion of DON and nivalenol in the mill fractions varied between years. DON and nivalenol were higher in flour fractions and lower in bran and offal in samples from 2004 compared to samples from 2005. This may be a consequence of high rainfall pre-harvest in 2004 resulting in movement of these mycotoxins within grains before harvest. There was no significant difference in the distribution of ZON within mill fractions between the two years. For DON, higher concentrations in the grain resulted in a greater proportion of DON within the flour fractions. Understanding the factors that impact on the fractionation of mycotoxins during milling will help cereal processors to manufacture products within legislative limits.  相似文献   

8.
A new method for the simultaneous quantification of 12 mycotoxins was developed and optimized using reverse phase high performance liquid chromatography (RP-HPLC) with a photodiode array (PDA) and fluorescence detector (FLD), a photochemical reactor for enhanced detection (PHRED) and post-column derivatization. The mycotoxins included aflatoxins (AFB(1), AFB(2), AFG(1), and AFG(2)), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB(1), FB(2), and FB(3)), T-2 and HT-2 toxins. A double sample extraction with a phosphate-buffered saline solution (PBS) and methanol was used for co-extraction of mycotoxins, and a multifunctional immunoaffinity column was used for cleanup. Optimum conditions for separation of the mycotoxins were obtained to separate 12 mycotoxins in FLD and PDA chromatograms with a high resolution. The method gave recoveries in the range 72-111% when applied to spiked corn samples. The limits of detection (LOD) were 0.025 ng/g for AFB(1) and AFG(1), 0.012 ng/g for AFB(2) and AFG(2), 0.2 ng/g for OTA, 1.5 ng/g for ZEA, 6.2 ng/g for FB(1), FB(3) and HT-2 toxin, 9.4 ng/g for FB(2) and T-2 toxin, and 18.7 ng/g for DON. In addition, the limits of quantification (LOQ) ranged from 0.04 ng/g for AFB(2) and AFG(2) to 62 ng/g for DON. The method was successfully applied to the determination of these mycotoxins in 45 cereal samples obtained from the Malaysian market. The results indicated that the method can be applied for the multi-mycotoxin determination of cereals.  相似文献   

9.
Toxic secondary metabolites produced by fungi representing Fusarium genus are common contaminants in cereals worldwide. To estimate the dietary intake of these trichothecene mycotoxins, information on their fate during cereal processing is needed. Up-to-date techniques such as high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC-MS/MS) was used for the analysis of seven trichothecenes (deoxynivalenol, nivalenol, HT-2 toxin, T-2 toxin, 15- and 3-acetyldeoxynivalenol, and fusarenon-X) in bread production chain (wheat grains, intermediate products collected during milling and baking process, breads). Regardless of whether the grains were naturally infected or artificially inoculated by Fusarium spp. in the field, the fractions obtained from the grain-cleaning procedure contained the highest mycotoxin levels. During milling the highest concentrations of deoxynivalenol were found in the bran, the lowest in the reduction flours. Baking at 210°C for 14 min had no significant effect on deoxynivalenol levels. The rheological properties of dough measured by fermentograph, maturograph, oven rise recorder, and laboratory baking test were carried out, and based on the obtained results the influence of mycotoxin content on rheological behaviour was investigated.  相似文献   

10.
Each year (2001–2005), 300 samples of wheat from fields of known agronomy were analysed for ten trichothecenes by gas chromatography-mass spectrometry (GC/MS) including deoxynivalenol (DON), nivalenol, 3-acetyl-DON, 15-acetyl-DON, fusarenone X, T2 toxin, HT2 toxin, diacetoxyscirpenol, neosolaniol and T-2 triol and zearalenone by high-performance liquid chromatography (HPLC). Of the eleven mycotoxins analysed from 1624 harvest samples of wheat, only eight were detected, and of these only five–deoxynivalenol, 15-acetyl-DON, nivalenol, HT-2 and zearalenone–were detected above 100 µg kg?1. DON was the most frequently detected Fusarium mycotoxin, present above the limit of quantification (10 µg kg?1) in 86% of samples, and was usually present at the highest concentration. The percentage of samples that would have exceeded the recently introduced legal limits varied between 0.4% and 11.3% over the five-year period. There was a good correlation between DON and zearalenone concentrations, although the relative concentration of DON and zearalenone fluctuated between years. Year and region had a significant effect on all mycotoxins analysed. There was no significant difference in the DON concentration of organic and conventional samples. There was also no significant difference in the concentration of zearalenone between organic and conventional samples, however organic samples did have a significantly lower concentration of HT2 and T2. Overall, the risk of UK wheat exceeding the newly introduced legal limits for Fusarium mycotoxins in cereals intended for human consumption is low, but the percentage of samples above these limits will fluctuate between years.  相似文献   

11.
A new method for the simultaneous quantification of 12 mycotoxins was developed and optimized using reverse phase high performance liquid chromatography (RP-HPLC) with a photodiode array (PDA) and fluorescence detector (FLD), a photochemical reactor for enhanced detection (PHRED) and post-column derivatization. The mycotoxins included aflatoxins (AFB1, AFB2, AFG1, and AFG2), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB1, FB2, and FB3), T-2 and HT-2 toxins. A double sample extraction with a phosphate-buffered saline solution (PBS) and methanol was used for co-extraction of mycotoxins, and a multifunctional immunoaffinity column was used for cleanup. Optimum conditions for separation of the mycotoxins were obtained to separate 12 mycotoxins in FLD and PDA chromatograms with a high resolution. The method gave recoveries in the range 72–111% when applied to spiked corn samples. The limits of detection (LOD) were 0.025?ng/g for AFB1 and AFG1, 0.012?ng/g for AFB2 and AFG2, 0.2?ng/g for OTA, 1.5?ng/g for ZEA, 6.2?ng/g for FB1, FB3 and HT-2 toxin, 9.4?ng/g for FB2 and T-2 toxin, and 18.7?ng/g for DON. In addition, the limits of quantification (LOQ) ranged from 0.04?ng/g for AFB2 and AFG2 to 62?ng/g for DON. The method was successfully applied to the determination of these mycotoxins in 45 cereal samples obtained from the Malaysian market. The results indicated that the method can be applied for the multi-mycotoxin determination of cereals.  相似文献   

12.
Wheat grain contamination with toxigenic Fusarium spp. is of great economic concern to cereal producers and to the grain processing industry and is of great relevance for the quality and safety of the final products. In particular, the bread production chain can potentially be a vehicle for mycotoxin ingestion above the tolerable total daily intake. A quantitative polymerase chain reaction‐based analytical approach has been developed as a possible tool to estimate and control the risk of mycotoxins, particularly deoxynivalenol (DON). This DNA‐based analytical method has been applied to detect and quantify contamination levels of Fusarium graminearum and Fusarium culmorum in naturally infected wheat grain samples. The persistence of Fusarium contamination was also detected along the bread production chain in wholemeal, flour and bread. A significant correlation was found between Fusarium DNA and DON concentration in all samples.  相似文献   

13.
Fusarium spp. invasion causes head blight, a destructive disease in the world's main wheat-growing areas, and deoxynivalenol (DON) and zearalenone (ZEA) contamination in cereal-based products. No data are available on the relationship between Fusarium spp. on commercial wheat samples in Mexico City and the presence of mycotoxins. A total of 30 wheat samples were subject to a PCR method involving genes of the trichothecene and zearalenone biosynthesis pathways to detect the presence of Fusarium. Detection and quantification of DON and ZEA was performed using liquid chromatography coupled to UV detection. PCR indicated the presence of the Tri5 and PKS4 genes in 16.7 and 23.3% of samples, respectively. DON and ZEA contamination was found in 51.2 and 71.4% of samples, respectively, where a positive amplification was obtained. This work presents up-to-date information on mycotoxin contamination in Mexico, where improved contamination/exposure data and firm control/monitoring measures are needed.  相似文献   

14.
A total of 50 samples of poultry feed mixtures of Slovakian origin were analyzed for eight toxicologically significant Fusarium mycotoxins, namely zearalenone (ZON), A-trichothecenes: diacetoxyscirpenol (DAS), T-2 toxin (T-2) and HT-2 toxin (HT-2) and B-trichothecenes: deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON) and nivalenol (NIV). The A-trichothecenes and the B-trichothecenes were detected by means of high pressure liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS) and gas chromatography electron capture detection (GC-ECD), respectively. Reversed phase-high performance liquid chromatography with a fluorescence detector (RP-HPLC-FLD) was used for ZON detection. The most frequent mycotoxin detected was T-2, which was found in 45 samples (90%) in relatively low concentrations ranging from 1 to 130 microg kg(-1) (average 13 microg kg(-1)), followed by ZON that was found in 44 samples (88%) in concentrations ranging from 3 to 86 microg kg(-1) (average 21 microg kg(-1)). HT-2 and DON were detected in 38 (76%) and 28 (56%) samples, respectively, in concentrations of 2 to 173 (average 18 microg kg(-1)) for HT-2 and 64 to 1230 microg kg(-1) sample (average 303 microg kg(-1)) for DON. The acetyl-derivatives of DON were in just four samples, while NIV was not detected in any of the samples investigated. In as many as 22 samples (44%), a combination of four simultaneously co-occurring mycotoxins, i.e. T-2, HT-2, ZON and DON, was revealed. Despite the limited number of samples investigated during this study poultry feed mixtures may represent a risk from a toxicological point of view and should be regarded as a potential source of the Fusarium mycotoxins in Central Europe. This is the first reported study dealing with zearalenone and trichothecene contamination of poultry mixed feeds from Slovakia.  相似文献   

15.
A survey was carried out to obtain data on the occurrence of Fusarium mycotoxin in wheat and flour samples collected from local markets in Egypt and to study the influence of gamma-irradiation on controlling the occurrence of these mycotoxins in wheat, flour and bread. Deoxynivalenol (DON) was detected in five samples of wheat at levels ranging from 103 to 287 μg/kg and one sample each of flour and bread at concentrations 188 and 170 μg/kg. Zearalenone (ZEN) was detected in ten samples of wheat at levels from 28 to 42 μg/kg and four samples each of flour and bread at concentrations of 95 and 34 μg/kg, respectively. T-2 toxin was detected only in one sample each of wheat, flour and bread at concentrations of 2.9, 2.2 and 2.3 μg/kg, respectively. Gamma-irradiation at dose level of 6 kGy completely eliminated fungal flora in flour and wheat. DON, ZEN and T-2 toxin concentrations are reduced to 85, 20 and 2.0 μg/kg for wheat and to 125, 45, and 1.0 μg/kg for flour after 4 kGy exposure and a sharp drop in Fusarium toxin levels occurred at 6 kGy and was eliminated at 8 kGy. Bread prepared from 6 kGy was contaminated with Fusarium toxin at levels below 5 μg/kg. It was noticed that gamma-irradiation reduce greatly the natural occurrence of Fusarium mycotoxins in bread.  相似文献   

16.
Toxic secondary metabolites produced by fungi representing Fusarium genus are common contaminants in cereals worldwide. To estimate the dietary intake of these trichothecene mycotoxins, information on their fate during cereal processing is needed. Up-to-date techniques such as high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC-MS/MS) was used for the analysis of seven trichothecenes (deoxynivalenol, nivalenol, HT-2 toxin, T-2 toxin, 15- and 3-acetyldeoxynivalenol, and fusarenon-X) in bread production chain (wheat grains, intermediate products collected during milling and baking process, breads). Regardless of whether the grains were naturally infected or artificially inoculated by Fusarium spp. in the field, the fractions obtained from the grain-cleaning procedure contained the highest mycotoxin levels. During milling the highest concentrations of deoxynivalenol were found in the bran, the lowest in the reduction flours. Baking at 210 degrees C for 14 min had no significant effect on deoxynivalenol levels. The rheological properties of dough measured by fermentograph, maturograph, oven rise recorder, and laboratory baking test were carried out, and based on the obtained results the influence of mycotoxin content on rheological behaviour was investigated.  相似文献   

17.
Toxic secondary metabolites produced by fungi representing Fusarium genus are common contaminants in cereals worldwide. To estimate the dietary intake of these trichothecene mycotoxins, information on their fate during cereal processing is needed. Up-to-date techniques such as high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC-MS/MS) was used for the analysis of seven trichothecenes (deoxynivalenol, nivalenol, HT-2 toxin, T-2 toxin, 15- and 3-acetyldeoxynivalenol, and fusarenon-X) in bread production chain (wheat grains, intermediate products collected during milling and baking process, breads). Regardless of whether the grains were naturally infected or artificially inoculated by Fusarium spp. in the field, the fractions obtained from the grain-cleaning procedure contained the highest mycotoxin levels. During milling the highest concentrations of deoxynivalenol were found in the bran, the lowest in the reduction flours. Baking at 210 degrees C for 14 min had no significant effect on deoxynivalenol levels. The rheological properties of dough measured by fermentograph, maturograph, oven rise recorder, and laboratory baking test were carried out, and based on the obtained results the influence of mycotoxin content on rheological behaviour was investigated.  相似文献   

18.
Each year (2002–2005), approximately 100 samples of barley from fields of known agronomy were analysed for ten trichothecenes by gas chromatography-mass spectrometry (GC/MS) including deoxynivalenol (DON), nivalenol, 3-acetyl DON, 15-acetyl DON, fusarenone X, T-2 toxin (T2), HT-2 toxin (HT2), diacetoxyscirpenol, neosolaniol, and T-2 triol. Samples were also analysed for moniliformin and zearalenone by high-performance liquid chromatography (HPLC). Of the ten trichothecenes analysed from 446 harvest samples of barley, only two, diacetoxyscirpenol and neosolaniol, were not detected. The concentrations of type A trichothecenes were similar to those that occurred in wheat over the same period, whilst those of type B trichothecenes were markedly lower. Deoxynivalenol was the most frequently detected Fusarium mycotoxin, present above the limit of quantification (10 µg kg?1) in 57% of samples, and was usually present at the highest concentration. A single sample (0.2%) exceeded the legal limit for DON in unprocessed barley over the 4-year period. Moniliformin and zearalenone were both rarely detected (2% of samples greater than 10 µg kg?1 for both toxins) with maximum concentrations of 45 and 44 µg kg?1, respectively. Year and region had a significant effect on DON and HT2 + T2, but there was no significant difference in the concentration of these mycotoxins between organic and conventional samples. Overall, the risk of UK barley exceeding the newly introduced legal limits for Fusarium mycotoxins in cereals intended for human consumption is very low, but the percentage of samples above these limits will fluctuate between years.  相似文献   

19.
Mycotoxins are a potential health threat in cereals including wheat. In the European Union (EU), mycotoxin maximum levels are laid down for cereal raw materials and final food products. For wheat and wheat‐based products, the EU maximum levels apply to deoxynivalenol (DON), zearalenone, aflatoxins, and ochratoxin A. This review provides a comprehensive overview on the different mycotoxins and their legal limits and on how processing of wheat can affect such contaminants, from raw material to highly processed final products, based on relevant scientific studies published in the literature. The potential compliance with EU maximum levels is discussed. Of the four mycotoxins regulated in wheat‐based foods in the EU, most data are available for DON, whereas aflatoxins were rarely studied in the processing of wheat. Furthermore, available data on the effect of processing are outlined for mycotoxins not regulated by EU law—including modified and emerging mycotoxins—and which cover DON derivatives (DON‐3‐glucoside, mono‐acetyl‐DONs, norDONs, deepoxy‐DON), nivalenol, T‐2 and HT‐2 toxins, enniatins, beauvericin, moniliformin, and fumonisins. The processing steps addressed in this review cover primary processing (premilling and milling operations) and secondary processing procedures (such as fermentation and thermal treatments). A special focus is on the production of baked goods, and processing factors for DON in wheat bread production were estimated. For wheat milling products derived from the endosperm and for white bread, compliance with legal requirements seems to be mostly achievable when applying good practices. In the case of wholemeal products, bran‐enriched products, or high‐cereal low‐moisture bakery products, this appears to be challenging and improved technology and/or selection of high‐quality raw materials would be required.  相似文献   

20.
Although analytical methods have been already reported for legislated mycotoxins as trichothecenes and zearalenone (ZON) separately, we describe the optimization of a simple and rapid multimycotoxin method for the determination of a total of 12 mycotoxins simultaneously, nine trichothecenes (NIV, DON, FUS-X, DAS, 15-AcDON, 3-AcDON, NEO, HT-2, T-2 T2), and zearalenone and its metabolites (ZON, α-ZOL, β-ZOL), of different origin (wheat, oat, barley and spelt) and in three different products where these substance can be present (grain, flour and bread) reach the food chain and cause toxic effect either in humans or animals. The extraction procedure was based on a mixture of acetonitrile/water (84/16, v/v), which provided the highest recoveries and the lowest matrix effect. DON-d1 was used as internal standard (I.S.) which helped to compensate the significant matrix effect observed for some matrices, and to obtain high success in the method validation and to reach the parameters compiled in Commission Decision, 2002/657/EC. Analytes were determinate by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). Relative recoveries obtained were higher than 70% for the studied mycotoxins the four cereal. Good linearity (r2 > 0.992) was obtained and quantification limits (2.5–25 ng/g) were below European regulatory levels. Repeatability, expressed as relative standard deviation, was always lower than 11%, whereas interday precision was lower than 11% for the developed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号