首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Migration from recycled paperboard was monitored after 2, 4 and 9 months of storage for six test foods industrially packed in five configurations, four with internal plastic films. After 9 months, the migration of mineral oil saturated hydrocarbons into foods directly packed in the paperboard amounted to 30–52 mg/kg, which corresponded to 65%–80% of those of a volatility up to that of the n-alkane C24 in the paperboard. The concentration of the migrated aromatic hydrocarbons in the foods ranged from 5.5 to 9.4 mg/kg. More than half of this migration occurred in the first 2 months. Differences between the foods amounted to mostly less than a factor of 2 and seemed to be related to porosity or permeability more than fat content. Nine photoinitiators were detected in the paperboard, of which eight migrated into the packed food at up to 24%. Several plasticisers were present in the recycled paperboard, but only butyl phthalates showed significant migration. After 9 months, up to 40% of diisobutyl phthalate and 20% of dibutyl phthalate migrated into the food with direct contact. The internal polyethylene film hardly slowed migration, but the film and the tray absorbed approximately three times more mineral oil than the food, despite constituting merely 4% of the mass of the pack. Oriented polypropylene strongly slowed migration: The highest migration of saturated hydrocarbons measured after 9 months (2.3 mg/kg) corresponded to only 3% of the content in the paperboard and included migrated polyolefin oligomeric saturated hydrocarbons. Coating of polypropylene with an acrylate further slowed the migration, but the migration from the paperboard was still detectable in four of the six samples. Polyethylene terephthalate was a tight barrier.  相似文献   

2.
Recycled board plays an important role in food packaging, but the great variety of organic impurities must be considered as potential food contaminants. The diffusion behaviour of the impurities is significantly different from that in plastic materials. The two-layer concept for paper and board introduced recently is now treated in more detail. In the rate-determining surface region the diffusion coefficients of the n-alkanes in the homologous series with 15–35 carbon atoms decrease proportionally as their vapour pressures. This leads to a different equation of the diffusion coefficients in comparison with that for the core layer. Different polarities of the migrants have additional influences on the diffusion due to their interactions with the fibre matrix. A new analytical method for the quantification of aromatic impurities has previously been developed. Based on this method and on the described diffusion behaviour, a migration model for specific and global mass transfer of impurities from recycled board into dry food and food simulants is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号