首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium mycotoxins deoxynivalenol (DON), nivalenol (NIV) and zearalenone (ZEN) were investigated in wheat from the 2009 and 2010 crop years. Samples (n = 745) from commercial fields were collected in four wheat producing regions (WPR) which differed in weather conditions. Analyses were performed using HPLC-DAD. Contamination with ZEN, DON and NIV occurred in 56, 86 and 50%, respectively. Also, mean concentrations were different: DON = 1046 µg kg?1, NIV < 100 µg kg?1 and ZEN = 82 µg kg?1. Co-occurrence of ZEN, DON and NIV was observed in 74% of the samples from 2009 and in 12% from 2010. Wet/cold region WPR I had the highest mycotoxin concentration. Wet/moderately hot region WPR II had the lowest mycotoxin levels. Furthermore, the mean concentration of each mycotoxin was higher in samples from 2009 as compared with those from 2010. Precipitation during flowering or harvest periods may explain these results.  相似文献   

2.
Fusarium genera can produce trichothecenes like deoxynivalenol (DON), zearalenone (ZEN) and T-2 toxin, which can occur in feed cereal grains. Enzyme-linked immunosorbent assays (ELISA) tests of different Hungarian swine feedstuff proved that these mycotoxins were present. In this survey, 45 feed samples from 3 significant Hungarian swine feedstuff manufacturers were tested. ELISA methodology validation showed mean recovery rates in ranges from 85.3% to 98.1%, with intermediate precision of 86.9-96.9% and variation coefficients of 3.4–5.7% and 5.9–7.1%, respectively. The results showed that among Fusarium toxins, generally DON was present in the highest concentration, followed by T-2 and finally ZEN in all tested swine feeds. Each of the mycotoxins was found above the limit of detection in all swine feedstuffs. Boars feed’s DON (average ± standard deviation was 872 ± 139 µg kg?1) and ZEN (172 ± 18 µg kg?1) results of one of the manufacturers were above the guidance values. It indicates the necessity for efficient monitoring of DON, ZEN and T-2 mycotoxins in swine feeds.  相似文献   

3.
Fungi are distributed worldwide and can be found in various foods and feedstuffs from almost every part of the world. Mycotoxins are secondary metabolites produced by some fungal species and may impose food safety risks to human health. Among all mycotoxins, aflatoxins (AFs), ochratoxin A (OTA), trichothecenes, deoxynivalenol (DON and T‐2 toxin), zearalenone (ZEN), and fumonisins (FMN) have received much attention due to high frequency and severe health effects in humans and animals. Malaysia has heavy rainfall throughout the year, high temperatures (28 to 31 °C), and high relative humidity (70% to 80% during wet seasons). Stored crops under such conditions can easily be contaminated by mycotoxin‐producing fungi. The most important mycotoxins in Malaysian foods are AFs, OTA, DON, ZEN, and FMN that can be found in peanuts, cereal grains, cocoa beans, and spices. AFs have been reported to occur in several cereal grains, feeds, nuts, and nut products consumed in Malaysia. Spices, oilseeds, milk, eggs, and herbal medicines have been reported to be contaminated with AFs (lower than the Malaysian acceptable level of 35 ng/g for total AFs). OTA, a possible human carcinogen, was reported in cereal grains, nuts, and spices in Malaysian market. ZEN was detected in Malaysian rice, oat, barley, maize meal, and wheat at different levels. DON contamination, although at low levels, was reported in rice, maize, barley, oat, wheat, and wheat‐based products in Malaysia. FMN was reported in feed and some cereal grains consumed in Malaysia. Since some food commodities are more susceptible than others to fungal growth and mycotoxin contamination, more stringent prevention and control methods are required.  相似文献   

4.
Zearalenone (ZEN) and ochratoxin A (OTA) are secondary toxic metabolites of fungi that can contaminate a wide range of food and feedstuff. In this study, the effects of ozone treatment on ZEN and OTA and the quality of ozonised corn are investigated. Ozone significantly affects ZEN and OTA solutions. ZEN was undetectable 5 s after being treated with 10 mg l–1 ozone. However, OTA was resistant to ozonation with a degradation rate of 65.4% after 120 s of treatment. Moreover, ZEN and OTA solutions were difficult to degrade after being dried by a nitrogen stream. Results showed that ozone effectively degraded ZEN and OTA in corn. The degradation rates of ZEN and OTA in corn increased with ozone concentration and treatment time. The degradation of ZEN and OTA at different ozone concentrations appropriately conformed to first-order kinetics with an R2 value > 0.8749. Furthermore, under the same conditions, corn with increased moisture content (MC) (19.6%) was more sensitive to ozone than corn with a low MC (14.1%). When treated with 100 mg l–1 ozone for 180 min, ZEN and OTA in corn with 19.6% MC decreased by 90.7% and 70.7%, respectively. To evaluate the quality of ozonised corn, subsequent quality experiments were conducted using corn samples treated at different times with 100 mg l–1 ozone. The MC of corn decreased after ozone treatment. The whiteness and yellowness of the corn increased and decreased with increasing time, respectively. The fatty acid value of the corn increased significantly (≤ 0.05) after 180 min of treatment. This study verified that ozone can effectively degrade ZEN and OTA in corn, but slightly affected corn quality.  相似文献   

5.
This study investigated several food safety criteria in 38 different commercial products of processed cereal-based foods (PCF) from the German market. Microbiological assessment, followed by 16S RNA gene sequencing of suspect colonies, included aerobic mesophilic bacteria, moulds, Enterobacteriaceae, Cronobacter spp., and presumptive Bacillus cereus. Mycotoxin analyses were performed by enzyme immunoassays for deoxynivalenol (DON), zearalenone (ZEN), T-2/HT-2 toxins (T-2/HT-2; oat containing products only), ergot alkaloids (EA), and alternariol (AOH). No violative result above existing European Union regulations or international guidelines was obtained. Most samples had very low aerobic mesophilic cell counts (<2.0 × 101 CFU/g), the maximum was 9.6 × 102 CFU/g. A few samples contained low numbers of opportunistic pathogens, most notably Cronobacter sakazakii, Acinetobacter spp., Pantoea spp., and enterotoxigenic Bacillus wiedmannii. Levels of mycotoxin contamination were very low, well below European Union maximum limits. DON was found in 10 samples, at levels of 9–35 µg/kg. T-2/HT-2 were found in all 15 oat-based products (1–8 µg/kg). All samples were negative for ZEN and EA. A high number (= 25) of samples yielded weakly positive results for the nonregulated AOH (0.4–2 µg/kg), but just three samples exceeded a level of 1 µg/kg. No relationship between cereal composition and analytical findings for microbiological parameters and mycotoxins could be found. As long as PCF meals are freshly prepared and consumed immediately after preparation, the risk from sporadically occurring opportunistic bacteria appears to be minimal.  相似文献   

6.
Deoxynivalenol (DON) is a mycotoxin found in cereal grains and cereal-based foods. DON concentrations in finished products are reduced under some processing conditions, but not others. DON concentrations in flour, wheat and selected foods made from them under commercially relevant conditions were compared by GC with electron capture detection. Average concentrations (n?=?9/item) in cookies, crackers and pretzels ranged from 61% (cookies) to 111% (pretzels) compared with flour (100%?=?0.46?µg?g?1). Lesser amounts were found in donuts and bread: their respective DON concentrations were 44% and 30% that of flour. Mass balance estimates for DON (µg?g?1 flour equivalents) ranged from 50% (bread?=?0.23?µg?g?1 flour equivalents) to 120% (donuts), indicating that dilution by recipe ingredients contributed to DON reductions in bread and accounted for all of the apparent reduction in donuts. Mass balance estimates averaged 76% (crackers) to 107% (pretzels) for the other flour products. DON concentrations were higher in cereal flakes (0.55?µg?g?1 in the finished product and 0.58?µg?g?1 on a mass balance basis) than in wheat (0.40?µg?g?1), suggesting that DON concentrations might increase during processing of wheat cereals under some conditions. In summary, DON concentrations of finished food products were reduced?≥50% only in bread and donuts. Reduction in bread resulted from a combination of DON ‘loss’ and dilution by recipe ingredients whereas the reduction in donuts was due entirely to dilution. These results are further evidence of DON stability during the preparation of popular flour or wheat-based products.  相似文献   

7.
Deoxynivalenol (DON), a toxic fungal metabolite, is stable under different processing conditions; however, its stability in aqueous medium at different temperatures and low pH (1–2) (present in the gastrointestinal tract) has not been investigated. In the present study, DON standard was used to study the influence of temperature and pH on DON stability in aqueous medium, the characterisation of the degraded product, and the comparative toxicity profile of the degraded and the parent compound. The results suggest that standard DON was unstable at 125–250°C showing 16–100% degradation whereas DON at pH 1–3 had 30–66% degradation, with a concomitant increase in the formation of a degraded product. Further ESI-MS characterisation of the dominant precursor ion of the HPLC eluate of the DON-degraded product was found to be m/z 279, resembling the known metabolite DOM-1. The degraded product of DON was reconfirmed as DOM-1 by comparison with standard DOM-1 and both gave a similar λmax at 208 nm. Comparative studies of both standard DOM-1 and the degraded product of DON showed no cytotoxicity up to 6400 ng ml–1 while significant cytotoxicity was observed for DON (400 ng ml–1). The results suggest that a highly acidic environment (pH 1–2) could be responsible for the de-epoxydation of DON leading to the formation of DOM-1.  相似文献   

8.
Seven commercially available deoxynivalenol (DON) and zearalenone (ZEN) immunoaffinity columns (IACs) were tested for cross-reactivity to conjugated forms (3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, DON-3-glucoside, DON-3-glucuronide, ZEN-glucosides, ZEN-glucuronide) and metabolites (de-epoxydeoxynivalenol, α-zearalenol, β-zearalenol) and nivalenol (NIV), using a semi-quantitative multi-mycotoxin ultra-performance liquid chromatography-tandem mass spectrometry method. The DON IACs showed cross-reactivity for nearly all DON derivatives tested. The ZEN IACs showed limited cross-reactivity to some of the ZEN derivatives. The IACs were evaluated for their potential use as sample clean-up for mycotoxins in serum.  相似文献   

9.
Seven commercially available deoxynivalenol (DON) and zearalenone (ZEN) immunoaffinity columns (IACs) were tested for cross-reactivity to conjugated forms (3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, DON-3-glucoside, DON-3-glucuronide, ZEN-glucosides, ZEN-glucuronide) and metabolites (de-epoxydeoxynivalenol, α-zearalenol, β-zearalenol) and nivalenol (NIV), using a semi-quantitative multi-mycotoxin ultra-performance liquid chromatography-tandem mass spectrometry method. The DON IACs showed cross-reactivity for nearly all DON derivatives tested. The ZEN IACs showed limited cross-reactivity to some of the ZEN derivatives. The IACs were evaluated for their potential use as sample clean-up for mycotoxins in serum.  相似文献   

10.
The Fusarium mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T-2 frequently contaminate grain crops in Middle and Eastern Europe. In this survey, 116 cereal samples (maize, wheat, barley and oat) were examined for DON, ZEN and T-2 mycotoxins. Samples were collected from different areas in two Hungarian regions (North and South Transdanubia). The method of analysis was indirect competitive ELISA. Maize was the most contaminated grain regarding DON (86%), ZEN (41%) and T-2 (55%) toxins. The average results of the deoxynivalenol and zearalenone tests of maize proved to be significantly higher than those of barley or oat. DON was the most represented Fusarium mycotoxin followed by T-2 and ZEN. The examination of these mycotoxins would be necessary at a larger scale as to re-evaluate permissible levels, so increase of the monitoring programme would be advisable for the future.  相似文献   

11.
Deoxynivalenol (DON) is an important mycotoxin produced by several species of Fusarium. It occurs often in wheat grain and is frequently associated with significant levels of its modified form DON-3-glucoside (DON-3-Glc). Ozone (O3) is a powerful disinfectant and oxidant, classified as GRAS (Generally Recognised As Safe), that reacts easily with specific compounds including the mycotoxins aflatoxins, ochratoxin A, trichothecenes and zearalenone. It degrades DON in aqueous solution and can be effective for decontamination of grain. This study reports the efficacy of gaseous ozone treatments in reducing DON, DON-3-Glc, bacteria, fungi and yeasts in naturally contaminated durum wheat. A prototype was used to dispense ozone continuously and homogeneously at different concentrations and exposure time, in 2 kg aliquots of durum wheat. The optimal conditions, which do not affect chemical and rheological parameters of durum wheat, semolina and pasta, were identified (55 g O3 h?1 for 6 h). The measured mean reductions of DON and DON-3-Glc in ozonated wheat were 29% and 44%, respectively. Ozonation also produced a significant (p < 0.05) reduction of total count (CFU/g) of bacteria, fungi and yeasts in wheat grains.  相似文献   

12.
Deoxynivalenol (DON) is a mycotoxin found in cereal grains and cereal-based foods. DON concentrations in finished products are reduced under some processing conditions, but not others. DON concentrations in flour, wheat and selected foods made from them under commercially relevant conditions were compared by GC with electron capture detection. Average concentrations (n = 9/item) in cookies, crackers and pretzels ranged from 61% (cookies) to 111% (pretzels) compared with flour (100% = 0.46 μg g?1). Lesser amounts were found in donuts and bread: their respective DON concentrations were 44% and 30% that of flour. Mass balance estimates for DON (μg g?1 flour equivalents) ranged from 50% (bread = 0.23 μg g?1 flour equivalents) to 120% (donuts), indicating that dilution by recipe ingredients contributed to DON reductions in bread and accounted for all of the apparent reduction in donuts. Mass balance estimates averaged 76% (crackers) to 107% (pretzels) for the other flour products. DON concentrations were higher in cereal flakes (0.55 μg g?1 in the finished product and 0.58 μmg g?1 on a mass balance basis) than in wheat (0.40 μg g?1), suggesting that DON concentrations might increase during processing of wheat cereals under some conditions. In summary, DON concentrations of finished food products were reduced ≥ 50% only in bread and donuts. Reduction in bread resulted from a combination of DON ‘loss’ and dilution by recipe ingredients whereas the reduction in donuts was due entirely to dilution. These results are further evidence of DON stability during the preparation of popular flour or wheat-based products.  相似文献   

13.
The effects of three regimens of cycling incubation temperatures and incubation at constant 25 degrees C on the growth of Fusarium graminearum NRRL 5883 and production of deoxynivalenol (DON) and zearalenone (ZEN) on rice were compared. The effects of low-temperature stress were also studied by incubating rice cultures at a constant 15 degrees C for 4 weeks following incubation at constant 25 degrees C for 2 weeks. Both incubation temperature and time significantly (P < or = 0.05) affected growth of F. graminearum NRRL 5883 and production of DON and ZEN. The highest amount of free ergosterol (640 microg/g culture material) that was used as a measure of fungal growth was found in cultures incubated at temperatures cycling between 15 and 30 degrees C during a 6-week period. The highest amounts of DON (1,679 microg/g culture material) and ZEN (603 microg/g culture material) were produced in cultures incubated at a constant 25 degrees C for 2 weeks prior to incubation at a constant 15 degrees C for an additional 4 weeks. Under cycling incubation temperatures, maximum amounts of DON (850 microg/g culture material) and ZEN (98 microg/g culture material) were produced in cultures incubated at temperatures cycling between 15 and 30 degrees C for 6 weeks. Overall, there was no correlation between mold growth and production of either DON or ZEN. However, DON production and ZEN production were correlated.  相似文献   

14.
Wheat bran is an important source for human and animal feed. Its nutritional aspects include a high content of fibre and minerals, as well as phenolic compounds that help prevent chronic diseases. However, wheat can be susceptible to contamination by fungus, which can produce mycotoxins such as deoxynivalenol (DON) and zearalenone (ZEN), causing adverse health effects. Therefore, methods should be developed to reduce possible contamination. Ozone can be used for this purpose as it is considered safe and environmental friendly. The aim of this study was to evaluate the reduction of DON and ZEN concentrations in wheat bran using the ozonation process as well as to evaluate the effect of ozonation on the nutritional quality of bran. Considering this, wheat bran naturally contaminated with both DON and ZEN was processed using ozone at different conditions. The nutritional quality of the bran was evaluated after processing considering the following aspects: the total phenolic content and the bran antioxidant capacity (by using both DPPH and ABTS radicals). The results showed that the degradation of ZEN was higher and faster than the degradation of DON, which could be explained by their molecular structures. The total phenolic content and antioxidant capacity of the bran were not affected by the ozonation process, which is preferable from a nutritional point of view. Therefore, ozonation was demonstrated to be a possible method for reducing mycotoxins in wheat bran, although more studies are needed in order to better understand and optimise processing and product quality.  相似文献   

15.
Zearalenone (ZEN) is a common mycotoxin, for which only reductive metabolites have been identified so far. We now report that ZEN is extensively monohydroxylated by microsomes from human liver in vitro. Two of the major oxidative metabolites arise through aromatic hydroxylation and are catechols. Their chemical structures have been unambiguously determined by using deuterium‐labeled ZEN and by comparison with authentic reference compounds. Moreover, both catechol metabolites of ZEN were substrates of the enzyme catechol‐O‐methyl transferase. One of the monomethyl ethers represented the major metabolite when ZEN was incubated with rat liver slices, thus demonstrating that catechol formation also takes place under in vivo‐like conditions. Out of ten major human cytochrome P450 (hCYP) isoforms only hCYP1A2 was able to hydroxylate ZEN to its catechols with high activity. Catechol formation represents a novel pathway in the metabolism of ZEN and may be of toxicological relevance.  相似文献   

16.
The estrogenic mycotoxin zearalenone (ZEN) is known to get metabolized to the alpha-and beta-isomers of zearalenol, but no hydroxylation products of ZEN have yet been reported as metabolites in animals or humans. We have therefore incubated ZEN with microsomes from rat liver in the presence of a nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH)-regenerating system and analyzed the extracted metabolites with HPLC and GC-MS after trimethylsilylation. A total of 17 in vitro metabolites were observed. The two major metabolites were tentatively identified as monohydroxylated ZEN with the newly introduced hydroxyl group localized in the aliphatic macrocyclic ring. According to the GC-MS analysis, other six monohydroxylation products of ZEN were formed as minor metabolites, together with alpha-and beta-zearalenol and monohydroxylated zearalenols. Thus, ZEN has a considerable propensity for undergoing metabolic hydroxylation reactions in vitro, and the in vivo formation and biological properties of such oxidative metabolites should now be studied.  相似文献   

17.
In this study moulds and 12 mycotoxins in dry pet food samples (25 for dogs and 24 for cats) were determined. Primary moulds identified were Aspergillus, Mucor and Penicillium, found in 55% of the samples. Deoxynivalenol and zearalenone (ZEN) were detected in all samples with mean respective concentrations being 97.3 and 38.3 µg kg?1 in cat food and 114 and 20.1 µg kg?1 in dog food. T-2 and HT-2 toxins were present in 88% and 84% of the samples, respectively. Two samples contained fumonisins, with a maximum concentration of 108 µg kg?1. Aflatoxin B1 and ochratoxin A were detected in 8% and 45% of the samples, respectively. The measured mould and mycotoxin levels were consistent with results obtained by other studies. However, potential exposure to relatively high concentrations of an oestrogen mycotoxin as is ZEN, especially when in combination with other mycotoxins, needs attention.  相似文献   

18.
Molds and their mycotoxins are an expensive problem for the malting and brewing industries. Deoxynivalenol (DON) is a mycotoxin that is associated with Fusarium spp. These fungi frequently cause Fusarium head blight in wheat and barley in the midwestern region of the United States; Manitoba, Canada; Europe; and China. Barley growers and malt producers would benefit from a postharvest control method for mold growth and DON production. We evaluated the use of gaseous ozone (O(3)) for preventing Fusarium growth and mycotoxin production while maintaining malt quality characteristics. Micromalting was performed in three replications under standard conditions. Ozone treatment was applied to malting barley during steeping via a submerged gas sparger. Ozone treatment conditions were 26 mg/cm(3) for 120 min after 2 and 6 h of steeping. The effects of gaseous ozone on DON, aerobic plate counts, Fusarium infection, and mold and yeast counts of barley throughout the malting process were measured. Various quality parameters of the malt were measured after kilning. Statistical tools were used to determine the significance of all results. Ozonation of malting barley during steeping did not lead to significant reductions in aerobic plate counts but did lead to a 1.5-log reduction in mold and yeast counts in the final malt. The influence of gaseous ozone on DON concentration was inconclusive because of the low initial concentrations of DON in the barley. Ozone significantly reduced Fusarium infection in germinated barley. Gaseous ozone did not negatively influence any aspect of malt quality and may have subtle beneficial effects on diastatic power and β-glucan concentrations.  相似文献   

19.
玉米原粮贸易过程中,真菌毒素快检是主要的卫生指标检测技术之一,但由于真菌毒素在原粮中的污染通常分布极不均匀,造成了检测数据差异大,准确性难于评估等问题。本研究通过广泛筛查玉米原粮天然真菌毒素污染物,研制满足均匀性、稳定性要求的玉米中脱氧雪腐镰刀菌烯醇(DON)、玉米赤霉烯酮(ZEN)质量控制样品。通过组织行业内企业参加原粮检测化验室能力验证活动,评价粮食中真菌毒素快检技术的应用情况。本研究报名参加毒素快检能力验证共153家企业,其中仓储粮库占36%、饲料养殖企业占64%。实验室遍布17个省、市、自治区,均采用食品快速检验技术检测并报送数据。DON及ZEN能力验证稳健CV分别为26%及29%,一定程度上反应了原粮毒素快检的实际使用情况,为提升快检技术及实验室原粮检测能力,提供行业数据支持。  相似文献   

20.
Contamination of feed with trichothecenes, a group of Fusarium mycotoxins, leads to losses in performance due to their immunosupressive effects and the negative effect on the gastrointestinal system in animal production. A possible way of detoxification is microbial degradation, which was the focus of this study. A bacterial strain - BBSH 797 - which can degrade some mycotoxins of the trichothecene group, has already been isolated. It transforms deoxynivalenol (DON) into its metabolite DOM-1, the non-toxic deepoxide of DON. Analogous to the microbial degradation of DON, the transformation of six different type A trichothecenes was observed. The metabolites appearing were characterized by GC-MS after derivatization with TRI-SIL®TBT. Two metabolites were additionally identified by liquid chromatography-mass spectrometry with particle beam interface (LC-PB-MS) with electron impact (EI)-ionization mode. The major finding was that scirpentriol was completely transformed into its non-toxic metabolite deepoxy scirpentriol, while the mycotoxin T-2 triol underwent a more complicated metabolism. According to the study, T-2-triol was degraded into its non-toxic deepoxy form and into T-2 tetraol, which was then further metabolized to deepoxy T-2 tetraol. GC-MS after derivatization with TRI-SIL®TBT was suitable for the structural characterization of trichothecenes and their degradation products. Besides the mass spectra of already known degradation products, spectra of new metabolites could be recorded by LC-PB-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号