首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A five-factor Central Composite Orthogonal Design was adopted to study simultaneous effects of some processing variables such as NaCl (0-2%), fat (10-30%), ascorbic acid (0-600 ppm), cooking temperature (150-230°C) and cooking time (5-15 min) on physicochemical properties and heterocyclic aromatic amine (HAA) contents of cooked beef patties. The HAAs analyzed were 2-amino-3-methylimidazo[4,5-f]-quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]-quinoxaline (MeIQx), 2-amino-3,4-dimethylimidazo[4,5-f]-quinoline (MeIQ), 2-amino-3,4,8-trimethylimidazo[4,5-f]-quinoxaline (4,8-DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP), as quantified by high-performance liquid chromatography with photo-diode array detection (HPLC-UV/DAD). It was found that ascorbic acid decreased; however, fat, cooking temperature and time levels increased the contents of IQ, MeIQx, MeIQ and PhIP. In addition, estimated ridge analysis was conducted to find values of the processing variables that maximize and minimize the five HAA contents, revealing that the results obtained would be useful for meat industry aiming to decrease HAA content in cooked meat products.  相似文献   

2.
Heterocyclic aromatic amines in fried poultry meat   总被引:1,自引:0,他引:1  
 Heterocyclic aromatic amines are mutagenic compounds that are formed during heating of meat and fish. These substances are products of the reaction of creatine with amino acids and carbohydrates. It is recommended that exposure to these probable human carcinogens should be minimised. In fried boneless lean turkey breast meat five heterocyclic aromatic amines {2-amino-1-methyl-imidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethyl-imidazo-[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)} were found. The temperature regime which was applied for frying resulted in a surface temperature of about 140°C. Clean-up was done by acid-base partition followed by solid-phase extraction (SPE) using blue cotton. HPLC analysis was carried out using electrochemical detection for IQ- and IQx-type compounds and fluorescence detection for PhIP. The low temperatures used during frying yielded comparably lower amounts of heterocyclic aromatic amines. The concentrations of the aromatic amines were as follows: IQ 1.1 μg/kg, MeIQ 0.9 μg/kg, MeIQx μg/kg, 4,8-DiMeIQx 0.4 μg/kg, and PhIP 3.8 μg/kg. Received: 19 February 1997 / Revised version: 21 April 1997  相似文献   

3.
以美拉德模型体系葡萄糖-肌酸酐-氨基酸(丙氨酸、苏氨酸、甘氨酸)为研究对象,探索3 个体系在130 ℃条件下反应3 h后风味物质及杂环胺的形成。采用固相微萃取-气相色谱-质谱联用方法检测表明,3 种模型均产生烧烤风味物质,主要为烷基吡嗪类。高效液相色谱分析表明,丙氨酸模型(Ⅰ)和甘氨酸模型(Ⅲ)均检测到2-氨基-3,4-二甲基咪唑并[4,5-f]喹啉、2-氨基-3,4,8-三甲基咪唑并[4,5-f]喹喔啉和2-氨基-3,7,8-三甲基咪唑并[4,5-f]喹喔啉3 种杂环胺,苏氨酸模型(Ⅱ)检测到了2-氨基-3,4-二甲基咪唑并[4,5-f]喹啉和2-氨基-3,4,8-三甲基咪唑并[4,5-f]喹喔啉2 种杂环胺;3 种模型体系均未检测到2-氨基-3-甲基咪唑并[4,5-f]喹啉和2-氨基-3,8-二甲基咪唑并[4,5-f]喹喔啉。130 ℃温和条件下,1.5 h内各模型体系中杂环胺的生成量很少,1.5 h后杂环胺总量随着加热时间的延长逐渐增多,3 h时模型Ⅰ、Ⅱ、Ⅲ中杂环胺总量分别为(375.50±15.80)、(414.00±18.40)、(363.50±12.20) ng/mL。本研究为肉制品加工尤其是烤肉制品加工如何控制加工条件,从而实现美拉德反应定向控制、减少杂环胺的产生提供一定参考。  相似文献   

4.
 Heterocyclic aromatic amines (HAs) are mutagenic compounds that are formed during heating of meat and fish. These substances are reaction products of creatine with amino acids and carbohydrates. It is recommended that exposure to these probable human carcinogens should be minimised. Five heterocyclic aromatic amines which occur in beef were investigated: 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethyl-imidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx), and 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP). Clean-up was done by acid-base partition followed by SPE using blue cotton. HPLC analysis was carried out by using electrochemical detection for IQ- and IQx-type compounds and fluorescence detection for PhIP. The concentrations of the aromatic amines were as follows: IQ, 10.2 μg/kg; MeIQ, 2.46 μg/kg; MeIQx, 13.2 μg/kg; 4,8-DiMeIQx, 2.26 μg/kg; and PhIP, 5.48 μg/kg. The application of spices (rosemary, thyme sage, garlic, brine) reduced the content of the HAs below 60% of the amount found in the control. Received: 23 April 1998  相似文献   

5.
Carcinogenic heterocyclic aromatic amines are difficult to measure since only trace levels are present in processed meat products. In this study, typical heterocyclic aromatic amines, including 2-amino-3-methylimidazo [4,5-f] quinoline (IQ), 2-amino-3,4-dimethylimidazo [4,5-f] quinoline (MeIQ), 2-amino-3,8-dimethyli-midazo [4,5-f] quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimi-dazo [4,5-f] quinoxaline (4,8-DiMeIQx), 2-amino-1-methyl-6-ph-enylimidazo [4,5-b]pyridine (PhIP), were studied to develop a sensitive and accurate method for their rapid quantification in animal-derived products, with 2-Amino-3,4,7,8-dimethylimidazo [4,5-f] quinoxalline (TriMeIQx) as an internal standard. Liquid chromatography–electrospray-tandem mass spectrometry conditions were analyzed to enhance detection sensitivity. Diatomaceous earth was employed to extract heterocyclic aromatic amines from meat samples, and the analytes were purified and enriched using tandem solid phase extraction, with siliprep propylsulfonic acid coupled to a C18 cartridge. A number of parameters, including pH, eluent and volume, were carefully optimized to improve the extraction and purification efficiency. Under the optimal experimental conditions, the limits of detection for each analyte within the meat matrix were 0.5 pg (injected). The established method was applied to evaluate commercial meat products. At three spiked levels of 0.2, 1 and 4 μg kg−1, the recoveries and relative standard deviations were measured as 76.4–122.2 and 0.9–23.4%, respectively, suggesting the developed method is promising for the accurate quantification of heterocyclic aromatic amines at trace levels in processed meats.  相似文献   

6.
Heterocyclic aromatic amines (HAAs) are sometimes formed in meats and fish cooked at high temperatures. In the present study, the effects of cooking methods by deep-fat frying, pan-frying, grilling and barbecuing on the formation of HAAs of fillets of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta fario) were investigated. Barbecued brown trout (1 g) was estimated to contain 0.12 ng of IQ (2-amino-3-methylimidazo[4,5-f]quinoline), 0.02 ng 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline). Grilled rainbow trout (1 g) was estimated to contain 0.02 ng 4,8-DiMeIQx. MeIQ (2-amino-3,4-dimethylimidazo[4,5-f]quinoline), MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) were not detectable in all cooked fish.  相似文献   

7.
The study was carried out to determine the effect of cooking method on Heterocyclic Aromatic Amines (HAs) concentration in grilled chicken and beef (satay). Six common HAs were investigated: 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2amino 3,4dimethylimidazo [4,5f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8 trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-3,7,8trimethylimidazo [4,5-f]quinoxaline (7,8-DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Chicken and beef satay samples were grilled to medium and well done level of doneness. Charcoal grilled (treatment A), microwave pre-treatment prior to grilling (treatment B), and microwave-deep fried (treatment C) were applied to beef and chicken satay samples. The satay samples which were microwaved prior to grilling (B) showed significantly (p < 0.05) lower HAs concentration as compared to those charcoal grilled (A). Both medium and well done cooked beef and chicken satay samples that were microwaved and deep fried (C) as an alternative method to grilling were proven to produce significantly lesser HAs as compared to charcoal-grilled (A) and microwaved prior to grilling (B).  相似文献   

8.
This paper describes a method for the determination of nine heterocyclic aromatic amines (HCAs) in commercial frozen meat products, which were sold in Turkey by ultrafast liquid chromatography (UFLC) with ultraviolet visible detection. HCAs are separated on a Shim-pack XR-ODS (7.5?×?3 mm, 2.2 μm). Varying levels of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (up to 1.95 ng/g), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx) (up to 4.17 ng/g), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) (up to 0.69 ng/g), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (up to 0.83 ng/g), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (up to 0.22 ng/g), 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) (up to 0.94 ng/g), 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) (up to 4.58 ng/g), 2-amino-9H-pyrido[2,3-b]indole (AαC) (up to 0.57 ng/g), and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) (up to 3.51 ng/g) were detected in these commercial frozen meat products of Turkey. The data obtained show clearly that HCAs could be isolated in a very short time (5 min) by using UFLC.  相似文献   

9.
Heterocyclic aromatic amines (HAAs) are potent mutagens and carcinogens generated during the heat processing of meat. HAAs, which are abundant in processed meat products, include 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP). The content of these three HAAs in fried pork was determined by LC-MS/MS. The effects of frying time and temperature, sample shape, and addition of antioxidants on the generation of HAAs were investigated. The results show that HAAs were produced during frying, and their levels increased with increasing frying time and temperature. Pork patties had the highest concentration of HAAs compared with pork meatballs and pork strips. The addition of antioxidant of bamboo leaves (AOB), liquorice extract, tea polyphenol, phytic acid and sodium iso-ascorbate to pork before frying had an inhibitory effect on HAA generation, with AOB being the most effective antioxidant. Inhibition levels of nearly 69.73% for MeIQx, 53.59% for 4,8-DiMeIQx and 77.07% for PhIP in fried pork were achieved when the concentrations of AOB added were 0.02, 0.01 and 0.10 g kg?1, respectively.  相似文献   

10.
Heterocyclic amines (HCAs) which are produced in meats cooked at high temperature a risk factor for certain human cancers. This study evaluated the effect of enhancement on HCA formation in cooked pork loins. Three samples of pork loin were prepared including non-injected loin, 12% water-injected loin, and 12% salt/phosphate injected loin. The HCAs were identified in all samples: PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine), MeIQx (2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline), and DiMeIQx (2-amino-3,4,8-trimethylimidazo [4,5-f]quinoxaline). Injection of salt/phosphate significantly reduced the level of PhIP by 42.7%, MeIQx by 79.0%, and DiMeIQx by 75.0%. Enhancement with water alone did not reduce HCA formation.  相似文献   

11.
Heterocyclic aromatic amines (HCAs) in meatballs ready to eat and sold in restaurants in Turkey were determined. A solid phase extraction method was used to isolate HCAs from meatballs. Various HCAs analysed by ultra fast liquid chromatography (UFLC) were varying levels of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (up to 1.59 ng/g), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx) (up to 3.81 ng/g), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) (up to 0.66 ng/g), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (not detected or not quantified), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (not detected or not quantified), 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) (up to 0.43 ng/g), 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) (up to 1.93 ng/g), 2-amino-9H-pyrido[2,3-b]indole (AαC) (up to 0.35 ng/g), and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) (up to 0.43 ng/g) in cooked meatballs which are consumed in Turkey. Overall average of total HCA amount was 5.54 ng/g. The present study is to prove that HCAs can be isolated in a very short time (5 min) by using UFLC.  相似文献   

12.
Aminoazaarenes (heterocyclic amines, HAs) contents were investigated in pan-fried pork meat as well as in gravies generated during frying. The clean-up procedure included alkaline hydrolysis, tandem solid phase extraction on columns filled with Extrelut – diatomaceous earth, cation exchanger (propyl sulfonic acid) and chemically bounded phase – C18. Identification and quantitative analysis of HAs fraction was carried out using a HPLC system with DAD-type detector. Separation was achieved by using TSK-gel ODS 80-TM column and a mixture of 5% acetonitrile and 95% triethylamine phosphate buffer (pH 3.3) as a mobile phase. Six compounds were determined: 2-amino-1,6-dimethylimidazo[4,5-b]pyridine (DMIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP). Two types of dishes prepared at home according to common recipes used in Poland were investigated. The total content of aminoazaarenes determined in collar was 7.2 and in chop samples 18.0 ng g−1 of cooked meat. The total contents of investigated HAs in gravy samples were 10.2 and 15.1 ng g−1 of cooked meat for collars and chops, respectively.  相似文献   

13.
为了制备一种广谱性杂环胺抗体,并建立一种可以实现多种杂环胺同时检测的快速分析方法。以杂环胺2-氨基-3,4-二甲基咪唑[4,5-f]喹喔啉(MeIQx)为原料,将其与丁二酸单甲酯酰氯(MCO)反应合成杂环胺半抗原,通过活化酯法将半抗原与蛋白偶联制备免疫原进一步制备多克隆抗体,最终建立间接竞争酶联免疫分析方法(ic-ELISA)。该方法灵敏度(IC50,以MeIQx计)为81.16 μg/L,检测限(IC15)为12.07 μg/L。方法对喹啉类杂环胺(IQ、MeIQ)、喹喔啉类杂环胺(IQx、MeIQx、4,8-DiMeIQx、7,8-DiMeIQx、4,7,8-TriMeIQx)以及吡啶类杂环胺(PhIP)具有相同的识别能力,交叉反应率均达到93%以上。油炸牛肉和肉松样品中杂环胺(MeIQx)添加回收率在91.18%~98.64%之间,检测结果与液相色谱串联质谱法(LC-MS/MS)有很好的一致性(R2=0.9927)。本文建立的酶联免疫分析方法可以实现喹啉类、喹喔啉类以及吡啶类杂环胺总量的检测,为热加工肉制品中杂环胺的检测提供了一种简单、准确的快速检测方法。  相似文献   

14.
The effects of natural food ingredients including Korean bramble, onion, and marinade sauce with water extracts of olive and lotus leaf on the formation of 15 heterocyclic amines (HCAs) were evaluated in fried beef patties and chicken breasts. The patties and chicken breasts containing natural food ingredients were fried at 230 and 200°C for 8 min on each side. Addition of 4 g Korean bramble to beef patties reduced the formation of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 9H-pyrido [3,4-b]indole (Norharman), and 2-amino-6-methyldipyrido [1,2-a:3′,2′-d]imidazole (Glu-P-1) by 74, 62, and 39%, respectively. Also, when 2 g onion was added to beef patties, the formation of 2-amino-3,4,8-trimethylimidazo [4,5-f]quinoxaline (4,8-DiMeIQx), Glu-P-1, MeIQ, Norharman, and 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) was inhibited by 100, 96, 88, 74, and 79%, respectively. When marinade sauce containing 2% water extracts of olive and lotus leaf was added to chicken breasts, most HCAs formation was inhibited. Especially, the formation of Glu-P-1, 2-aminodipyrido [1,2-a:3′,2′-d]imidazole (Glu-P-2), and MeIQ were reduced by 100%.  相似文献   

15.
Heterocyclic amines (HAs), which form in meats during heating and cooking, are recognized as mutagenic and carcinogenic compounds. In this study, 13 HAs and 2 β-carbolines (BCs) were analyzed in cooked Korean meat products, including griddled bacon, griddled pork loin, boiled pork loin, boiled chicken meat, chicken meat stock, chicken breast for salad and chicken patty. The samples were either cooked in the laboratory or purchased from local fast-food restaurants. The HAs and BCs in the samples were separated using solid-phase extraction and were analyzed by high performance liquid chromatography–mass spectrometry (HPLC–MS). The most frequently detected HAs and BCs in the cooked meats were harman (1-methyl-9H pyrido[4,3-b]indole; 990.9 ng g?1), norharman (9H-pyrido[4,3-b]indole; 412.7 ng g?1) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; 258.2 ng g?1). The griddled pork loin and bacon contained higher levels of norharman, harman and PhIP than the other cooked meats. PhIP, which is classified as a Group 2B carcinogen by the International Agency for Research on Cancer, had levels of 258.2 and 168.2 ng g?1 in the griddled pork loin and griddled bacon, respectively. The griddled bacon was the only sample containing TriMeIQx (2-amino-3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline; 79.9 ng g?1). IQ (2-amino-3-methyl imidazo[4,5-f]quinoline), 7,8-DiMeIQx (2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline), 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline) and AαC (2-amino-9H-pyrido[2,3-b]indole) were detected at trace levels in all samples.  相似文献   

16.
An effective ion-pair-based surfactant-assisted dispersive liquid-liquid microextraction combined with high-performance liquid chromatography (HPLC) has been evaluated for the extraction and preconcentration of four heterocyclic aromatic amines (i.e., 2-amino-3,4-dimethyl-3H-imidazo[4,5-f]quinoline (MeIQ); 2-amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx); 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); and 1-methyl-9H-pyrido[3,4-B]indole (Harmane)). In the extraction method, sodium dodecyl sulfate (SDS) was used as both ion-pairing and disperser agent and 1-octanol was selected as extraction solvent. The effects of various parameters on the extraction efficiency such as kind and concentration of surfactant, kind and volume of extraction, salt addition, vortex extraction, and centrifugation time were investigated. Under the selected condition, the method provided high enrichment factor in the ranged of 124–145. Good linearity was 0.01–1000 μg kg?1 with the correlation coefficient (R 2)?>?0.999. The limit of detection was 0.01 μg kg?1 for all compounds. The matrix match calibration was used for quantitation of the target analytes in grilled pork samples. The proposed method was successfully applied to analysis of heterocyclic aromatic amines in grilled pork samples where good recoveries were obtained in the range of 90 and 106 %.  相似文献   

17.
Heterocyclic aromatic amines (HCAs) are mutagenic and carcinogenic compounds that are produced in meats cooked at high temperature. In this study, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 9H-pyrido[3,4-b]indole (norharman), and 1-methyl-9H-pyrido[3,4-b]indole (harman) were studied. A new extraction method was developed for the determination of heterocyclic amines with high-performance liquid chromatography (HPLC). Linearity for each HCA was observed with a high regression coefficient (r?=?0.9999, P?<?0.01 for IQ; r?=?0.9990, P?<?0.01 for MeIQx; r?=?0.9989, P?<?0.01 for 4,8-DiMeIQx; r?=?0.9934, P?<?0.05 for PhIP; r?=?1.000, P?<?0.01 for norharman; r?=?0.9991, P?<?0.01 for harman). Limits of detection for various HCAs were found between 0.04 and 1.40 ng/g. Limits of quantification were found in the range of 0.13–4.40 ng/g. Recovery rates varied from 68.9 % to 87.8 %. This method was compared with two different common HCA extraction methods in literature. The optimized new extraction method and the other two methods were used for the determination of HCAs in ten different cooked meatball samples. Sample extraction procedures of HCAs were investigated in more detail, and a rapid, accurate, precise, and reliable extraction method was developed.  相似文献   

18.
 Levels of known heterocyclic amines vary from undetectable in many meats sold in fast food restaurants, to over 10 ng/g for meats prepared in restaurants that cook food to order, to hundreds of nanograms per gram for some meats cooked under certain home or laboratory conditions. To simulate the dry reactions that seem to occur at the meat surface we developed a model system to mimic these processes. Mixtures of free amino acids, creatinine and glucose, simulating the composition of beef or chicken, heated at 200  °C, form eight heterocyclic amines. Besides the commonly found 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-1,6-dimethylimidazo[4,5-b]pyridine, 2-amino-1,5,6-trimethylimidazo[4,5-b]pyridine and 2-amino-1,6-dimethylfuro[3,2-e]imidazo[4,5-b]pyridine were also found. The calculated risk of consumption of heterocyclic amines is determined by the dietary dose, the extrapolation of carcinogenic potencies from rodents to humans, and the extrapolation of high rodent doses to low human exposures. Results suggest that DNA binding is linear with dose, but that the human DNA forms more adducts per unit dose than that of the rat. Altogether, the risk appears to be equivalent to that for many carcinogens that are regulated. Received: 23 April 1998  相似文献   

19.
 Levels of known heterocyclic amines vary from undetectable in many meats sold in fast food restaurants, to over 10 ng/g for meats prepared in restaurants that cook food to order, to hundreds of nanograms per gram for some meats cooked under certain home or laboratory conditions. To simulate the dry reactions that seem to occur at the meat surface we developed a model system to mimic these processes. Mixtures of free amino acids, creatinine and glucose, simulating the composition of beef or chicken, heated at 200  °C, form eight heterocyclic amines. Besides the commonly found 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-1,6-dimethylimidazo[4,5-b]pyridine, 2-amino-1,5,6-trimethylimidazo[4,5-b]pyridine and 2-amino-1,6-dimethylfuro[3,2-e]imidazo[4,5-b]pyridine were also found. The calculated risk of consumption of heterocyclic amines is determined by the dietary dose, the extrapolation of carcinogenic potencies from rodents to humans, and the extrapolation of high rodent doses to low human exposures. Results suggest that DNA binding is linear with dose, but that the human DNA forms more adducts per unit dose than that of the rat. Altogether, the risk appears to be equivalent to that for many carcinogens that are regulated. Received: 23 April 1998  相似文献   

20.
Heterocyclic aromatic amines (HAAs) are formed in protein-rich foods during high temperature cooking such as frying and grilling. Since most HAAs are potent mutagens and almost all are carcinogenic to laboratory animals, their formation in cooked foods is a health concern. In the present study, 31 cooked hamburgers and six chicken preparations were obtained from various fast food outlets in the Ottawa area and analyzed for HAAs. In the developed procedure, ground-up samples were extracted under both acidic and alkaline conditions, cleaned on SPE cartridges, and the concentrations of various HAAs determined using electrospray ionization LC/MS/MS. Deuterium-labelled internal standards of the three most commonly found HAAs (IQ, MeIQx, and PhIP) in such foods were used for quantitation and recovery correction. Varying levels of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (0.2–6 μg/kg), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (0.1–3.5 μg/kg), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (0.3–6.9 μg/kg), and 7,8-dimethyl-IQx (2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline) (0.1–2.9 μg/kg) were detected in most hamburgers, whereas our limited data on the chicken samples (wings, drumsticks, and nuggets) indicated the presence of mainly PhIP (0.1–2.1 μg/kg) and MeIQx (0.1–1.8 μg/kg). Traces of 4,7,8-trimethyl-IQx (<0.1 μg/kg), 3-amino-1,4-dimethyl-5H-pyrido[3,4-b]indole (Trp-P-1) (<0.1–0.3 μg/kg), and 3-amino-1-methyl-5H-pyrido[3,4-b]indole (Trp-P-2) (<0.1–0.8 μg/kg) were also detected in some samples of hamburgers but not in any of the chicken analyzed thus far. Since hamburger is a popular meal among Canadians, regular consumption of such items may contribute substantially to one's dietary intake of HAAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号