首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Surface-enhanced Raman spectra of a thiol-modified biotin derivative on oblique-angle-deposited silver nanorod (AgNR) array substrates were measured using both static and rotating rastering methods. We find that the rotating rastering method has a strong tendency to decrease the point-to-point relative standard deviation (RSD) compared to static measurements as well as decrease the effects of cumulative excitation exposure. The AgNR substrates treated with the modified biotin typically demonstrate intra-substrate RSDs of <10%, with an average RSD of ~3% when the rastering radius r=1 mm. The quantitative studies on the relationship between rastering radius, sampling area, and rastering frequency show that only the rastering radius appears to have significant effect on the measured RSD. Our results demonstrate that under the proper measurement and sample preparation conditions, the Ag nanorod substrates are very uniform.  相似文献   

3.
Yaney PP  Parish JW 《Applied optics》1996,35(15):2659-2664
Number density measurements of the populations of the vibrational states of the electronic ground state of molecules that use scanning coherent anti-Stokes Raman scattering (CARS) spectroscopy at pressures in which Doppler broadening dominates can be strongly influenced by population changes caused by the stimulated Raman process. Such measurements have been carried out in heterogeneous deactivation studies of vibrationally excited N(2) on various solid surfaces at 17 Torr. This process perturbs the populations of the states connected by the incident fields. It typically reduces the population difference and therefore reduces the observed CARS signal. Thus, as the incident laser irradiance increases, the observed signal exhibits saturation. A linear relationship for this effect in terms of the average laser powers is derived, providing a scheme for calibrating the initial onset of this saturation process. This calibration method permits simple corrections of the CARS data for saturation.  相似文献   

4.
提出了一种新的探测对流层低层大气温度的转动拉曼激光雷达方法,通过测量N2和O2的后向散射的纯转动拉曼谱的强度,计算它们的比值来确定大气温度的垂直分布,并对其性能进行了数值模拟。转动拉曼激光雷达的光源是一个调Q的Nd:YAG激光器,经扩束器后输出能量200mJ;采用双光栅单色仪提取所需要的氮气和氧气的转动拉曼谱;接收机采用光电倍增管和双通道光子计数器,量子效率是10%(48000个脉冲累加)。夜晚它对近地面10.2km高度内的探测信噪比在10:1以上,白天它对近地面3.6km高度内的探测信噪比在10:1以上,计算的温度与模拟用的温度真值阔线相差约0.3K。  相似文献   

5.
We report a refractive-index matching method to measure nonabsorbing solid ultraviolet (UV) Raman cross-sections that avoids the local field correction and interface scattering of incident light. We used refractive-index-matched chloroform as an internal standard to determine the solid-state 995 cm(-1) Na(2)SO(4) 244 nm Raman cross-sections. The pure liquid chloroform 668 cm(-1) 244 nm Raman cross-section was determined by using acetonitrile as an internal standard and by calculating the local field corrections for the observed Raman intensities. Our measured 244 nm UV Raman cross-section of the solid-state 995 cm(-1) SO4(2-) band of 1.97 ± 0.07 × 10(-28) cm(2)/(molc·sr) is about half of its aqueous solution Raman cross-section, indicating interactions between the sulfate species in the solid that decrease the Raman polarizability.  相似文献   

6.
7.
Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) can provide positive identification of an analyte or an analyte mixture with high sensitivity and selectivity. Better understanding of the theory and advances in the understanding of the practice have led to the development of practical applications in which the unique advantages of SERS/SERRS have been used to provide effective solutions to difficult analytical problems. This review presents a basic theory and illustrates the way in which SERS/SERRS has been developed for practical use.  相似文献   

8.
The influence of multiple scattering on the retrieval of extinction coefficients of tropospheric aerosols from ground-based backscatter lidar measurements is numerically modeled. In a first step, lidar returns are computed by means of a Monte Carlo code for model atmospheres with different aerosol types and different extinction coefficient profiles. In so doing, synthetic lidar signals with and without multiple scattering can be simulated. In a second step, both types of signal are inverted by the most frequently used analytical solution, which, however, is based on the single-scatter assumption. From a comparison of the results, the error of the retrieved aerosol-extinction profiles can be quantitatively determined. It was found that the contribution of multiply scattered photons to the lidar signals is typically below 10% and never exceeds 20%. The relative errors of the retrieved aerosol-extinction profile in the planetary boundary layer are still smaller; they were determined to be less than 3% for all aerosol types, even for extinction coefficients as large as 3.9 km(-1). Thus, for ground-based lidar measurements and typical meteorological conditions, errors caused by neglecting multiple scattering are by far less significant than other errors in lidar data evaluation.  相似文献   

9.
Hu C  Voss KJ 《Applied optics》1997,36(27):6962-6967
We have further developed and improved the prototype oceanic Fraunhofer line discriminator by using a well-protected fiber-optic-wire cable and in-water electronic housing. We conducted a series of in situ measurements in clear ocean water in the Florida Straits. By comparing the reduced data with the Monte Carlo simulation results, we verify the Raman scattering coefficient B(r) with an excitation wavelength at 488 nm to be 2.6 x 10(-4)m(-1) [Appl. Opt. 29, 71-84 (1990)], as opposed to 14.4 x 10(-4) m(-1) [Appl. Opt.14, 2116-2120 (1975)]. The wavelength dependence of the Raman scattering coefficient is found to have an insignificant effect on the in-water light field. We also discuss factors that lead to errors. This study can be used as a basis for inelastic light scattering in the radiative transfer theory and will allow other inelastic light, e.g., fluorescence, to be detected with in situ measurements.  相似文献   

10.
We have simulated backscatter signals of spaceborne lidar systems with the help of a Monte Carlo model. Calculations were performed for various combinations of system parameters. As typical examples of atmospheric observation targets, two kinds of cirrus cloud and two kinds of aerosol were considered. Both total multiple scattering and the significance of individual higher scattering orders are discussed. For all cases, an approximate multiple scattering factor F was calculated that can be used to correct the single-scattering lidar equation to account also for multiple scattering.  相似文献   

11.
Beiting EJ 《Applied optics》1997,36(15):3565-3576
Coherent anti-Stokes Raman scattering is demonstrated as a quantitative diagnostic in low-density flows by mapping H(2) velocity and translational temperature inside and outside the nozzle of a resistojet. A spatial resolution of better than 35 mum along the flow direction and 350 mum transverse to it was attained in a density as low as 5 x 10(15) cm(-3). The accuracy of the velocity, inferred from the Doppler shift of the Q (1) Raman resonance, was limited by the scan linearity of the laser to +/-0.2 km/s. Translational temperatures, inferred from linewidths and complicated by saturation and ac Stark effects, had an accuracy of ~20%. A discussion of applicability to molecular nitrogen is presented.  相似文献   

12.
Millot G  Dudley JM 《Applied optics》2002,41(13):2589-2591
A convenient technique for polarization-mode dispersion measurements in short lengths of high-birefringence fibers is reported. The technique is based on spectral interferometry with a frequency-doubled Nd:YAG laser, which is frequency shifted and broadened by self-stimulated Raman scattering in an optical fiber. The different Raman Stokes beams permit accurate measurements over a 40-nm wavelength range in the visible spectrum.  相似文献   

13.
We investigate the temperature dependent Raman spectra of Mn implanted (Ga,Mn)N samples with five Mn implantation doses. A small shoulder at 572.4 cm−1 on the high energy side of the main Raman peak has been attributed to the Mn-related local vibrational mode (LVM). It is found that with the increase of Mn implantation dose the intensity ratio of LVM to that of the increases at first and tends to saturate at high implantation dose. In addition, at high temperature or after rapid thermal anneal treatment, the value of decreases significantly, explaining the reason why it is difficult to observe Mn-related LVM reported in the literature.  相似文献   

14.
A single-laser Raman differential absorption lidar (DIAL) for ozone measurements in clouds is proposed. An injection-locked XeCl excimer laser serves as the radiation source. The ozone molecule number density is calculated from the differential absorption of the anti-Stokes rotational Raman return signals from molecular nitrogen and oxygen as the on-resonance wavelength and the vibrational-rotational Raman backscattering from molecular nitrogen or oxygen as the off-resonance wavelength. Model calculations show that the main advantage of the new rotational vibrational-rotational (RVR) Raman DIAL over conventional Raman DIAL is a 70-85% reduction in the wavelength-dependent effects of cloud-particle scattering on the measured ozone concentration; furthermore the complexity of the apparatus is reduced substantially. We describe a RVR Raman DIAL setup that uses a narrow-band interference-filter polychromator as the lidar receiver. Single-laser ozone measurements in the troposphere and lower stratosphere are presented, and it is shown that on further improvement of the receiver performance, ozone measurements in clouds are attainable with the filter-polychromator approach.  相似文献   

15.
Abstract

Pure rotational Raman scattering signals from atmospheric gases such as nitrogen and oxygen can be used to deduce the temperature of the atmosphere. Previously, this method has been successfully implemented as a remote temperature sensing lidar system. In this paper, theoretical studies of the method have been carried out using Monte Carlo simulations for different temperature profiles from radio sonde data. The geometry of the lidar as well as the aerosol profiles of the atmosphere can be specifically defined in this method. It is important to understand whether or not multiple scattering will have a significant effect on the accuracy of temperature retrieval from the measured lidar returns. From the exact pure rotational Raman scattering matrix, we have computed the lidar returns of individual Raman lines. We have given the ratios of multiple to single scattering return signals for atmospheres without clouds, with water clouds and with cirrus clouds. The results indicate that the effect of multiple scattering does not give errors to the temperature inversion for typical atmospheric conditions.  相似文献   

16.
Faris GW 《Applied optics》2005,44(11):2058-2071
Presented here are expressions for the P(N) approximation for light propagation in scattering media in the frequency domain. To elucidate parametric dependencies, the derivation uses normalization of the resulting expressions to either the total interaction coefficient or the reduced total interaction coefficient. For the latter case, a set of reduced phase function coefficients are introduced. Expression of the P(N) approximation as a conventional eigenvalue problem facilitates computation of the eigenvalues or attenuation coefficients. This approach is used to determine the attenuation coefficients in the asymptotic regime over the full values of the scattering albedo and reduced scattering albedo (0 to 1) and all positive values of the asymmetry factor (0 to 1). Frequency-domain measurements yield a sensitivity to turbid media optical properties for reduced scattering albedos as small as 0.2. P(N) calculations are used to assess the magnitude of errors associated with the P1 and P3 approximations over a range of scattering albedo, phase function, and modulation frequency.  相似文献   

17.
Stimulated anti-Stokes Raman scattering in molecular hydrogen allows for the generation of continuously tunable narrow-bandwidth radiation down to the transmission limit of vacuum ultraviolet (VUV) window materials. Simultaneous irradiation of UV-pump radiation (in this application, dye laser radiation of wavelength lambda = 372 nm) and of radiation whose wavelength corresponds to the first Stokes component allows a considerable increase in efficiency-by nearly 2 orders of magnitude in the far VUV. The additional Stokes radiation is generated in a simple manner during the passage of the unfocused pump radiation through a high-pressure Raman cell that precedes the VUV Raman cell.  相似文献   

18.
The simultaneous measurement of surface plasmon resonance (SPR) spectroscopy and surface-enhanced Raman scattering (SERS) on flat metallic surfaces is demonstrated on a relatively simple experimental setup based on the Kretschmann configuration. This setup requires only minor modifications to standard Raman microscopes, and we show that it can be applied successfully to the most common conditions of SPR spectroscopy, i.e., water-based solutions on gold films. Our results emphasize the peculiar properties of the Kretschmann configuration for spectroscopy in general and SERS measurements in particular, especially in terms of the asymmetry between excitation and collection requirements. The combination of simultaneous SPR-SERS spectroscopy opens up interesting prospects in analytical science to study, for example, reaction kinetics at surfaces under conditions which are already available in commercial SPR instruments.  相似文献   

19.
Menzies RT  Tratt DM 《Applied optics》1994,33(24):5698-5711
An airborne CO(2) coherent lidar has been developed and flown on over 30 flights of the NASA DC-8 research aircraft to obtain aerosol and cloud backscatter and extinction data at a wavelength near 9μm. Designed to operate in either zenith- or nadir-directed modes, the lidar can be used to measure vertical profiles of backscatter throughout the vertical extent of the troposphere and the lower stratosphere. Backscatter measurements in absolute units are obtained through a hard-target calibration methodology. The use of coherent detection results in high sensitivity and narrow field of view, the latter property greatly reducing multiple-scattering effects. Aerosol backscatter profile intercomparisons with other airborne and ground-based CO(2) lidars were conducted during instrument checkout flights over the NASA Ames Research Center before extended depolyment over the Pacific Ocean. Selected results from data taken during the flights over the Pacific Ocean are presented, emphasizing intercom arisons with backscatter profile data obtained at 1.06 μm with a NASA Goddard Space Flight Center Nd:YAG lidar on the same flights.  相似文献   

20.
The program for creating a system of support for the uniformity of measurements in global navigation satellite systems (GLONASS) is discussed, including development of the scientific basis and technical means, as well as of organizational and legal standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号