首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sappey AD 《Applied optics》1994,33(36):8346-8354
A novel method for detection of ballistic light and rejection of unwanted diffusive light to image structures inside highly scattering media is demonstrated. Degenerate four wave mixing (DFWM) of a doubled YAG laser in Rhodamine 6G is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore lost memory of the structures inside the scattering medium. We present preliminary results that determine the nature of the DFWM grating, confirm the coherence time of the laser, prove the phase-conjugate nature of the signal beam, and determine the dependence of the signal (reflectivity) on dye concentration and laser intensity. Finally, we have obtained images of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye. These imaging experiments demonstrate the utility of DFWM for imagingthrough turbid media. Based on our results, the use of DFWM as an ultrafast time gate for the detectionof ballistic light in optical mammography appears to hold great promise for improving the current state of the art.  相似文献   

2.
A single-frame X-ray framing camera has been set up for fast imaging of X-ray emissions from pulsed plasma sources. It consists of two parts, viz. an X-ray pin-hole camera using an open-ended microchannel plate (MCP) detector coupled to a CCD camera, and a high voltage short duration gate pulse for the MCP. The camera uses a 10-Μm pin-hole aperture for imaging on the MCP detector with a magnification of 6 X. The high voltage pulser circuit generates a pulse of variable duration from 5 to 30 ns (at 70% of peak amplitude) with variable amplitude from 800 V to 1.25 kV, and is triggered through a laser pulse synchronized with the event to be recorded. The performance of the system has been checked by recording X-ray emission from a laser-produced copper plasma. A reduction factor of ∼ 6.5 is seen in the dark current contribution as the MCP gate pulse is decreased from 250Μs to 5 ns duration.  相似文献   

3.
Busck J  Heiselberg H 《Applied optics》2004,43(24):4705-4710
We have developed a fast and high-accuracy three-dimensional (3-D) imaging laser radar that can achieve better than 1-mm range accuracy for half a million pixels in less than 1 s. Our technique is based on range-gating segmentation. We combine the advantages of gated viewing with our new fast technique of 3-D imaging. The system uses a picosecond Q-switched Nd:Yag laser at 532 nm with a 32-kHz pulse repetition frequency (PRF), which triggers an ultrafast camera with a highly sensitive CCD with 582 x 752 pixels. The high range accuracy is achieved with narrow laser pulse widths of approximately 200 ps, a high PRF of 32 kHz, and a high-speed camera with gate times down to 200 ps and delay steps down to 100 ps. The electronics and the software also allow for gated viewing with automatic gain control versus range, whereby foreground backscatter can be suppressed. We describe our technique for the rapid production of high-accuracy 3-D images, derive performance characteristics, and outline future improvements.  相似文献   

4.
Cochenour B  Mullen L  Muth J 《Applied optics》2011,50(33):6168-6178
Optical detection, ranging, and imaging of targets in turbid water is complicated by absorption and scattering. It has been shown that using a pulsed laser source with a range-gated receiver or an intensity modulated source with a coherent RF receiver can improve target contrast in turbid water. A blended approach using a modulated-pulse waveform has been previously suggested as a way to further improve target contrast. However only recently has a rugged and reliable laser source been developed that is capable of synthesizing such a waveform so that the effect of the underwater environment on the propagation of a modulated pulse can be studied. In this paper, we outline the motivation for the modulated-pulse (MP) concept, and experimentally evaluate different MP waveforms: single-tone MP and pseudorandom coded MP sequences.  相似文献   

5.
Lidar images of adult salmon are presented. The lidar system is built around a pulsed green laser and a gated intensified CCD camera. The camera gating is timed to collect light scattered from the turbid water below the fish to produce shadows in the images. Image processing increases the estimated contrast-to-noise ratio from 3.4 in the original image to 16.4 by means of a matched filter.  相似文献   

6.
We have developed an optical cross-sectional imaging method for turbid media with the aid of a pulse ultrasound wave. Observation of deep regions in turbid media, such as tissue samples, is difficult owing to the rapid dispersion of an incoming laser beam by scattering. A pulse ultrasound wave, which is less scattered in tissues, can indicate the measuring point on the basis of the change of the optical scattering properties in a localized region. A depth-resolving capability can be achieved from the time-dependent measurement of the scattered-light intensity as the pulse ultrasound wave propagates in the sample. We verified the method by observing absorptive objects embedded in silicone rubber and by obtaining the cross-sectional image of an absorbing object surrounded by a strong scattering medium.  相似文献   

7.
Cai W  Gayen SK  Xu M  Zevallos M  Alrubaiee M  Lax M  Alfano RR 《Applied optics》1999,38(19):4237-4246
Optical imaging and localization of objects inside a highly scattering medium, such as a tumor in the breast, is a challenging problem with many practical applications. Conventional imaging methods generally provide only two-dimensional (2-D) images of limited spatial resolution with little diagnostic ability. Here we present an inversion algorithm that uses time-resolved transillumination measurements in the form of a sequence of picosecond-duration intensity patterns of transmitted ultrashort light pulses to reconstruct three-dimensional (3-D) images of an absorbing object located inside a slab of a highly scattering medium. The experimental arrangement used a 3-mm-diameter collimated beam of 800-nm, 150-fs, 1-kHz repetition rate light pulses from a Ti:sapphire laser and amplifier system to illuminate one side of the slab sample. An ultrafast gated intensified camera system that provides a minimum FWHM gate width of 80 ps recorded the 2-D intensity patterns of the light transmitted through the opposite side of the slab. The gate position was varied in steps of 100 ps over a 5-ns range to obtain a sequence of 2-D transmitted light intensity patterns of both less-scattered and multiple-scattered light for image reconstruction. The inversion algorithm is based on the diffusion approximation of the radiative transfer theory for photon transport in a turbid medium. It uses a Green s function perturbative approach under the Rytov approximation and combines a 2-D matrix inversion with a one-dimensional Fourier-transform inversion to achieve speedy 3-D image reconstruction. In addition to the lateral position, the method provides information about the axial position of the object as well, whereas the 2-D reconstruction methods yield only lateral position.  相似文献   

8.
Raman scattering in single-mode optical fibers is exploited to generate multispectral light from a green nanolaser with high pulse repetition rate. Each pulse triggers a picosecond camera and measures the distance by time-of-flight in each of the 0.5 Mpixels. Three-dimensional images are then constructed with submillimeter accuracy for all visible colors. The generation of a series of Stokes peaks by Raman scattering in a Si fiber is discussed in detail and the laser radar technique is demonstrated. The data recording takes only a few seconds, and the high accuracy 3D color imaging works at ranges up to approximately 200 m. Applications for optical tomography in highly scattering media such as water and human tissue are mentioned.  相似文献   

9.
A Raman instrument was assembled and tested that rejects typically 98-99% of background fluorescence. Use is made of short (picosecond) laser pulses and time-gated detection in order to record the Raman signals during the pulse while blocking most of the fluorescence. Our approach uses an ultrafast-gated intensified charge-coupled device (ICCD) camera as a simple and straightforward alternative to ps Kerr gating. The fluorescence rejection efficiency depends mainly on the fluorescence lifetime and on the closing speed of the gate (which is about 80 ps in our setup). A formula to calculate this rejection factor is presented. The gated intensifier can be operated at 80 MHz, so high repetition rates and low pulse energies can be used, thus minimizing photodegradation. For excitation we use a frequency-tripled or -doubled Ti : sapphire laser with a pulse width of 3 ps; it should not be shorter in view of the required spectral resolution. Other critical aspects tested include intensifier efficiency as a function of gate width, uniformity of the gate pulse across the spectrum, and spectral resolution in comparison with ungated detection. The total instrumental resolution is 7 cm(-1) in the blue and 15 cm(-1) in the ultraviolet (UV) region. The setup allows one to use resonance Raman spectroscopy (RRS) for extra sensitivity and selectivity, even in the case of strong background fluorescence. Excitation wavelengths in the visible or UV range no longer have to be avoided. The effectiveness of this setup is demonstrated on a test system: pyrene in the presence of toluene fluorescence (lambda(exc) = 257 nm). Furthermore, good time-gated RRS spectra are shown for a strongly fluorescent flavoprotein (lambda(exc) = 405 nm). Advantages and disadvantages of this approach for RRS are discussed.  相似文献   

10.
We have applied laser-induced breakdown spectroscopy to quantitative analysis of colloidal and particulate iron in water. A coaxial sample flow apparatus developed in our previous work, which allowed us to control the atmosphere of laser-induced plasma, was used. Using sequential laser pulses from two Q-switched Nd:YAG lasers as excitation sources, the FeO(OH) concentration in the tens of ppb range was determined with an optimum interval between two laser pulses and an optimum delay time of a detector gate from the second pulse. The detection limit of Fe decreased substantially using two sequential laser pulse excitations: the 0.6 ppm limit of single pulse excitation to 16 ppb with sequential pulse excitation. The effects of the second laser pulse on the plasma emission were studied. The concentration of iron in fine particles in boiler water sampled from a commercially operated thermal power plant has been determined successfully by this method. The results show the capability of laser-induced breakdown spectroscopy in determining suspended colloidal and particulate impurities in a simple and quick way.  相似文献   

11.
异步触发CCD摄像机电子快门的预测方法和实现   总被引:1,自引:0,他引:1  
用激光回波脉冲控制电子快门来操纵摄像机的曝光时间,是抑制背景噪声的一种有效方法。提出了异步触发摄像机电子快门的预测方法,并将它应用在激光光斑的捕捉和测量中,提高了光斑图像的信噪比。该方法适宜 和于测量经过编码后的远距离激光脉冲光斑,为应用电视摄像机捕捉有规律的瞬态存在的目标提供了一个途径。  相似文献   

12.
Jermy MC  Allen A 《Applied optics》2002,41(20):4188-4196
Most optical measurements in turbid media (including sprays, fogs, particulate and colloidal suspensions) assume single scattering of the detected photons. Multiple scattering introduces error, which has been quantified in very few systems. To quantify this error, we have written a flexible Monte Carlo photon transport simulation code capable of handling any three-dimensional geometry. Simulations of planar laser spray imaging with large, nonabsorbing particles show that up to 50% of the photons reaching the camera are multiply scattered. Because forward scattering dominates, the image is affected little. For particles with more absorption or with size closer to the wavelength of the light than those we have simulated, the effects are expected to be more serious.  相似文献   

13.
Ossler F  Agrup S  Aldén M 《Applied optics》1995,34(3):537-540
Two-dimensional images of Mie scattered light from a water aerosol have been recorded by a streak camera with a time resolution of a few picoseconds. The laser pulse, which is 35 ps long, is repeatedly reflected and refocused in the probe volume. On the output phosphor screen of the streak camera, the images of the scattering appear as adjacent, separated pictures on the temporal axis of the streak camera. Because the pictures obtained in this way are separated in time by less than 3 ns, which is much shorter than the typical time scales of the turbulent gas flow, and because they are separated in space by fixed intervals, the resulting images can be used to compose a three-dimensional picture of the aerosol distribution.  相似文献   

14.
Ikuta M  Hagari R  Obara M  Tokida Y  Oda M  Shiratori A 《Applied optics》2002,41(10):1882-1887
We demonstrate full-color imaging through a turbid medium by use of photorefractive coherence gating and a technique to separate the recording space of each color from those of the other colors. We found that the recording spaces must be separate when a multicolor image is recorded in a photorefractive crystal to prevent the interference of the holograms with one another. For full-color imaging we used a He-Cd white-light laser, which is compact and useful for full-color holography. Full-color-image retrieval is demonstrated through five mean free paths of a turbid medium.  相似文献   

15.
Optoacoustic imaging is a potential novel medical imaging technology to image structures in turbid media to depths of several millimeters with a resolution of some tens of micrometers. Thereby short laser pulses generate thermoelastic pressure waves inside a tissue, which are detected on the surface with a wideband ultrasonic transducer. Image reconstruction has the goal of calculating the distribution of the absorbing structures in the tissue. We present a method in which the acoustic field distribution is captured as a two-dimensional snapshot at the sample surface, using an optical-reflectance-based detection principle with a detection resolution of 20 mum. A new image reconstruction is accomplished by backprojection of the detected two-dimensional pressure distributions into the sample volume by use of the delay between the laser pulse and the time the snapshot was taken. Two-dimensional pressure-wave distribution and image reconstruction are demonstrated by simulations and experiments, in which small objects are irradiated with laser pulses of 6-ns duration. The method opens the possibility to irradiate the sample hidden in a light-scattering medium directly through the detector plane, thus enabling front-surface detection of the optoacoustic signals, which is especially important if structures close to the tissue surface have to be imaged. Reconstructed tomography images with a depth resolution of 20 mum and a lateral resolution of 200 mum are presented.  相似文献   

16.
Multicolor imaging of vegetation fluorescence following laser excitation is reported for distances of 50 m. A mobile laser-radar system equipped with a Nd:YAG laser transmitter and a 40-cm-diameter telescope was utilized. The laser light was Raman shifted to 397 nm with pulse energies of ? 30 mJ. An image-intensified CCD camera with a specially designed split-mirror Cassegrainian telescope was utilized for the simultaneous recording of fluorescence images of leaves and branches in four different spectral bands. Additionally, fluorescence spectra at selected points within the detection area were measured with an image-intensified diode array system. Image processing permits extraction of information related to the physiological status of the vegetation and might prove useful in forest decline research.  相似文献   

17.
A new tool for imaging both scalar transport and velocity fields in liquid flows through microscale structures is described. The technique employs an ultraviolet laser pulse to write a pattern into the flow by uncaging a fluorescent dye. This is followed, at selected time delays, by flood illumination with a pulse of visible light which excites the uncaged dye. The resulting fluorescence image is collected onto a sensitive CCD camera. The instrument is designed as an oil immersion microscope to minimize beam steering effects. The caged fluorescent dye is seeded in trace quantities throughout the active fluid, thus images with high contrast and minimal distortion due to any molecular diffusion history can be obtained at any point within the microchannel by selectively activating the dye in the immediate region of interest. We report images of pressure- and electrokinetically driven steady flow within round cross section capillaries having micrometer scale inner diameters. We also demonstrate the ability to recover the velocity profile from a time sequence of these scalar images by direct inversion of the conserved scalar advection-convection equation.  相似文献   

18.
Xiang Y  Raphan T  Liang X  Wang L  Ho PP  Alfano RR 《Applied optics》1997,36(5):1045-1053
Ultrafast time-gated optical imaging and computational image-enhancement techniques were combined to produce a robust system for viewing objects in turbid media. Image enhancement was implemented by use of images from the early light with a histogram contrast-enhancement algorithm. Image quality was assessed by use of the contrast radius of gyration and the contrast-to-noise ratio. The technique was applied to viewing the dispersion of water droplets emanating from a jet spray and to pictures of an object embedded in turbid media. In all instances there were substantial improvements in image quality at a given time delay.  相似文献   

19.
Zemp RJ  Kim C  Wang LV 《Applied optics》2007,46(10):1615-1623
Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.  相似文献   

20.
The influence of the size parameter of the scatterers on ultrafast optical Kerr gate (OKG) imaging is investigated in highly scattering poly-disperse turbid media. The results show that in a poly-disperse turbid medium, which in our case, is a suspension of two different sized mono-disperse microspheres, the temporal and spatial behaviors of the light pulses transmitted through it are dominated by the smaller microspheres. The contrasts of the OKG images for the poly-disperse microsphere sample are closer to the contrasts of the OKG images for the smaller sized mono-disperse microsphere sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号