首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
受生物材料的韧/脆复合结构的启发,将Al箔、Ti箔和Ti2AlNb箔材堆叠排列,采用真空热压烧结技术制备了层级结构的Ti-Al-Ti-Ti2AlNb层状复合材料。利用SEM、XRD等技术表征了材料的微观结构,并测试了抗弯与抗压性能。研究发现,设计的层状结构复合了Ti、TiAl系列金属间化合物、Ti2AlNb等多种材料,层级结构明显,界面清晰。抗弯强度与抗压强度分别为1231±71MPa和1341±63MPa,相比同类材料具有显著的优势。分析认为,多层级结构的存在对裂纹的扩展有显著的阻碍作用;相比常规的二元TiAl层状材料,Ti2AlNb层的存在显著提高了力学性能。  相似文献   

2.
分析了利用原位反应和液态搅拌合成技术制备的Al3Ti-SiCp/Al-13Si复合材料的微观组织和增强相的微观结构,检测了该复合材料的力学性能,探讨了该复合材料的增强机理。研究结果表明:(1)T6态下该复合材料的室温、高温力学性能相对于基体材料分别提高了8%和20%,弹性模量提高了17%;(2)增强相主要是Al3Ti-SiCp;(3)增强机理是:细晶强化、颗粒增强和固溶时效强化。  相似文献   

3.
为了平衡钛基复合材料(titanium matrix composites, TMCs)的强度和延展性,通过电泳沉积将氧化石墨烯(graphene oxides, GOs)沉积到Ti箔表面,然后进行放电等离子烧结(spark plasma sintering, SPS)制备了具有层状结构的原位TiC/Ti复合材料,并对复合材料进行冷轧和退火处理从而进一步优化复合材料的综合力学性能。结果表明,烧结过程中,Ti箔表面的GOs与Ti基体反应形成了原位TiC,从而形成了TiC/Ti层状复合材料,随着沉积时间的增加,分布在Ti层之间的TiC的含量增加;复合材料经过冷轧和退火后,退火态材料的晶粒为等轴晶,且TiC仍然保持层状分布特征。沉积时间120 s时,烧结态材料的抗拉强度(UTS)为555 MPa,伸长率(δ)为15%;退火态材料的抗拉强度为568 MPa,伸长率为27%,相比于烧结态材料,退火态材料达到了较好的强塑性匹配。此外,基于微观组织及断裂行为的分析对复合材料的强韧化机制进行了讨论。  相似文献   

4.
采用混合盐法制备了TiB_2/Al-7Si复合材料,对复合材料的微观组织进行了观察,并对其力学性能进行了测试.结果表明:原位生成的TiB_2颗粒平均尺寸约400nm,在复合材料中分布均匀;TiB_2颗粒对α-Al和共晶Si都具有显著的细化效果;复合材料的力学性能较其基体有明显的提高;基体晶粒的细化及TiB_2颗粒的弥散分布是复合材料的主要强化机制.  相似文献   

5.
(TiB2+Al3Ti)/Al-4.5Cu原位复合材料的相结构与力学性能   总被引:5,自引:1,他引:5  
杨通  粱艳峰  董晟全 《铸造技术》2005,26(10):887-891
采用混合盐反应法制备(TiB2 Al3Ti)/Al-4.5Cu原位复合材料,测试其室温力学性能,并通过OPM、TEM等观察其微观组织.结果表明:增强相TiB2和Al3Ti弥散分布在α-Al中,颗粒的平均尺寸约100~300nm TiB2呈小圆片状,α-Al的(200)晶面与TiB2的(101)晶面存在局部共格关系,并有[011]Al∥[010]TiB2;Al3Ti呈棒状,几乎与α-Al完全共格,并有[121]Al∥[010]Al3Ti.(TiB2 Al3Ti)/Al-4.5Cu原位复合材料强韧化的主要机制为细晶强化和弥散强化.  相似文献   

6.
原位SiC颗粒增强MoSi_2基复合材料的显微组织和力学性能   总被引:4,自引:0,他引:4  
本文研究了原位 SiC颗粒增强 MoSi2基复合材料的组织结构和力学性能。结果表明:复合材料的组织为t-MoSi2基体上均匀分布 β-SiC等轴颗粒,数量很少的球形小孔隙主要分布在 SiC颗粒内, SiC颗粒尺寸为 2-5 μm.复合材料界面为直接的原子结合,无非晶层存在.复合材料的室温维氏硬度、断裂韧性、抗压强度及高温流变应力明显高于单一MoSi2,随着SiC体积分数的增加,维氏硬度、断裂韧性及高温流变应力提高,而抗压强度先增加后减少. SiC体积分数从 10%增加到 45%,KIC从 4.34提高到 5.71 MPa·m1/2;与单一 MoSi2相比提高了 25%-46%; 1400℃时,σ0.2从 20%SiC的 230提高到 45%SiC的 285 MPa,比单一 MoSi2提高了 98%-146%.  相似文献   

7.
原位自生TiB2/7055复合材料的组织与力学性能   总被引:1,自引:0,他引:1  
对原位自生亚微米TiB2/7055铝基复合材料的微观组织与力学性能进行了研究.结果表明,采用混合盐法反应工艺制备的TiB2含量为12%的7055复合材料.颗粒形状大小均匀,尺寸在200~500 mm之间,适量加入活性元素Mg,可以改善TiB2颗粒与铝基体界面润湿性,有效抑制颗粒的团聚,抗拉强度达到718 MPa,屈服强度达到679 MPa,伸长率达到4.2%,弹性模量达到86 GPa,复合材料拉伸断口呈韧性断裂特征,TiB2与基体界面的破坏以脱粘机制为主.  相似文献   

8.
以B4C,TiO2和石墨粉为原料,采用原位反应热压烧结工艺(2050℃,35MPa,1h)制备了致密的TiB2含量为10%~40%(体积分数)的TiB2/B4C复合材料,并对复合材料的组织结构和力学性能进行了研究。扫描电子显微镜和透射电子显微镜分析结果表明:在B4C晶内及晶界处均匀分布着纳米或亚微米级的TiB2颗粒,随着TiB2含量的增加,弹性模量和断裂韧性明显增大,而弹性模量和抗弯强度却随之减小。40%(体积分数)TiB2/B4C复合材料具有高的断裂韧性,高达8.2MPam1/2,主要增韧机制由微裂纹增韧和裂纹偏转增韧。  相似文献   

9.
利用金相显微镜、扫描电镜、电子背散射衍射和疲劳试验机研究了热处理对Cu/Ti层状异质结构复合材料微观组织及力学性能的影响。结果表明,在400℃×60 min热处理后,Cu/Ti界面处无扩散;在600℃×60 min热处理后生成2μm的扩散层,在800℃×60 min热处理后扩散层厚度增长至约12μm,分为Cu4Ti、Cu4Ti3和CuTi3共3层结构。400℃×60 min热处理后,复合材料因Ti层而存在异质结构,在拉伸变形过程中,异质变形诱导强化导致其拥有良好的综合力学性能,其抗拉强度和断后伸长率分别为361.7 MPa和36.7%。随着热处理温度的升高,Ti层异质结构逐渐消失,异质变形诱导强化减弱,同时Cu/Ti界面间生成金属间化合物层,从而导致复合材料塑性下降。  相似文献   

10.
原位合成TiC和TiB增强钛基复合材料的微观结构与力学性能   总被引:16,自引:5,他引:16  
利用钛与B4C之间的自蔓延高温合成反应经普通的熔钐工艺原位合成制备了TiC、TiB增强的钛基复合材料。光学金相、EPMA、TEM和X射线衍射的研究结果表明:存在匠两种不同形状的增强体,即短纤维状TiB晶须和等轴、近似等轴状TiC粒子。TiB、Ti基体界面洁净,没有明显的界面反应,而TiC、Ti基体界面有非化学配比的TiC过度层存在。由于增强体承受载荷,基体合金晶粒细化以及高密度位错的存在,制备钛基  相似文献   

11.
利用SiC与碳基材料复合,采用原位合成技术制备了一种新型碳陶瓷复合材料。采用XRD和SEM技术分别表征材料的相组成和微观形貌结构,并利用万能材料试验机测试了复合材料的抗压和抗折性能。XRD测试结果表明,SiC改性碳陶瓷复合材料中没有新相产生。由SEM照片分析可知,SiC的掺杂破坏了石墨原有的层片状结构,并在碳石墨材料中观察到颗粒状晶体,随着SiC掺量的增加,散乱分布的晶粒有聚集长大的趋势,造成碳陶瓷复合材料结构的进一步破坏。力学性能测试结果表明,当掺入10%SIC(质量分数)时,材料的抗折强度最大,为58.8MPa;而在SiC掺量为5%(质量分数),其抗压强度达到最大,为157.4MPa。  相似文献   

12.
以SiC颗粒和纳米SiC晶须复合增韧的ZrB2为基体层,以金属Mo为界面层,采用轧膜成型和热压烧结的方法,在1950℃,1h,25MPa压力/Ar气氛的条件下,成功制备了ZrB2/Mo层状复合材料。结果表明:制备的ZrB2/Mo层状复合材料的室温断裂韧性可达9.3±0.21MPa·m^1/2:通过对Mo界面层的合金化可使其抗弯强度达到400±36MPa,并且减弱了Mo层的室温脆化,克服了层状材料开裂现象。其主要增韧机制包括裂纹分叉钝化、裂纹偏转、裂纹沿界面层并行扩展等。Mo与ZrB2基体层发生界面反应生成MoB,ZrB以及Mo5SiB2,从而形成了强结合界面,影响了层状结构强韧化优越性的发挥。  相似文献   

13.
TiB2/Al-CU复合材料微观组织和力学性能研究   总被引:8,自引:1,他引:8  
采用原位反应合成法制备了TiB2/ZL2002复合材料.对复合材料的微观组织观察表明,增强相TiB2颗粒主要分布于晶界上,与CuAl2相交织在一起,尺寸在1μm左右,呈现圆球形.铸态下复合材料室温抗拉强度随着TiB2含量的增多而明显提高,伸长率则有降低的趋势.T6处理后,复合材料中析出相与增强相分布较均匀,6%TiB2/ZL202抗拉强度达到325 MPa.  相似文献   

14.
以Cu_2O和炭黑粉末为原料,采用原位还原-无压(热压)烧结工艺制备Cu_2O-Cu复合材料.利用XRD和OM对烧结试样进行研究,并测试其力学性能.研究表明,复合材料由Cu和Cu_2O两相组成,原位还原-无压烧结法的合理烧结时间为5 h,其力学性能高于传统粉末冶金法制备复合材料力学性能,抗压强度464 MPa.原位还原-热压烧结法可以改善试样致密性及细化微观组织,进一步提高力学性能,抗压强度达到702 MPa.  相似文献   

15.
研究了合金元素Mn不同含量对铝热反应熔化法制备的块体纳米晶Fe3Al材料力学性能的影响,结果表明当Mn添加到纳米晶Fe3Al材料中,对其压缩屈服强度和抗弯强度影响显著。加Mn 10%时,纳米晶Fe3Al材料的力学性能得到很大提高,使材料由脆性材料向塑性材料转变,大幅度提高了其压缩屈服强度,而且提高了抗弯屈服强度。含Mn 10 wt%的材料具有最佳的力学性能是由于其具有最小的纳米晶粒尺寸。对含Mn 10 wt%的材料在不同加载速率下进行的压缩性能试验研究表明:材料的压缩屈服强度随加载速率的增大而降低。  相似文献   

16.
原位合成TiC/AZ91复合材料力学性能的研究   总被引:1,自引:0,他引:1  
张修庆  李险峰  王浩伟 《铸造》2007,56(11):1178-1181
采用重熔稀释法原位制备了不同质量分数的TiC颗粒增强的镁基复合材料,并对复合材料进行了力学性能测试。结果表明,原位合成的镁基复合材料的强度相比基体合金有了明显提高,塑性稍微降低。镁基复合材料强度的增加主要是因为位错强化、弥散强化和细晶强化协调作用的结果。  相似文献   

17.
ZrB2基层状复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
以SiC颗粒和纳米SiC晶须复合增韧的ZrB2为基体层,以金属Mo为界面层,采用轧膜成型和热压烧结的方法,在1950℃,1 h,25 MPa压力/Ar气氛的条件下,成功制备了ZrB2/Mo层状复合材料.结果表明:制备的ZrB2/Mo层状复合材料的室温断裂韧性可达9.3±0.21 MPa·m1/2;通过对Mo界面层的合金化可使其抗弯强度达到400±36 MPa,并且减弱了Mo层的室温脆化,克服了层状材料开裂现象.其主要增韧机制包括裂纹分叉钝化、裂纹偏转、裂纹沿界面层并行扩展等.Mo与ZrB2基体层发生界面反应生成MoB,ZrB以及Mo5SiB2,从而形成了强结合界面,影响了层状结构强韧化优越性的发挥.  相似文献   

18.
针对不同烧结条件及TiC/WC组分比,采用热压烧结工艺制备出三层仿生结构复合陶瓷刀具材料。测试了仿生结构复合陶瓷材料力学性能,并对材料断口形貌和裂纹扩展进行了观察分析。结果表明:仿生结构复合陶瓷刀具材料抗弯强度达870 MPa,维氏硬度达21.83 GPa,断裂韧性达7.56 MPa?m1/2,比SG4均质陶瓷刀具材料性能有所提高。断口形貌显示仿生结构复合陶瓷刀具材料较SG4均质刀具材料晶粒细密,晶粒尺寸呈现多尺度特征。材料断裂模式为穿晶断裂和沿晶断裂混合型。仿生结构复合陶瓷材料表面裂纹扩展呈现偏转和分叉。裂纹穿过材料界面扩展时有明显偏转现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号