首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
受生物材料的韧/脆复合结构的启发,将Al箔、Ti箔和Ti2AlNb箔材堆叠排列,采用真空热压烧结技术制备了层级结构的Ti-Al-Ti-Ti2AlNb层状复合材料。利用SEM、XRD等技术表征了材料的微观结构,并测试了抗弯与抗压性能。研究发现,设计的层状结构复合了Ti、TiAl系列金属间化合物、Ti2AlNb等多种材料,层级结构明显,界面清晰。抗弯强度与抗压强度分别为1231±71MPa和1341±63MPa,相比同类材料具有显著的优势。分析认为,多层级结构的存在对裂纹的扩展有显著的阻碍作用;相比常规的二元TiAl层状材料,Ti2AlNb层的存在显著提高了力学性能。  相似文献   

2.
针对目前航空航天材料结构轻量化的要求,以连续SiC纤维、Ti箔和Ti_2AlNb箔为原材料,基于真空热压技术,采用Foil-Fiber-Foil法,通过优化制备工艺,获得SiC_f/Ti/Ti_2AlNb叠层复合材料。利用扫描电镜和能谱分析仪对制备的复合材料界面微观组织进行分析,通过密度测试和拉伸试验计算材料的比强度和比刚度。结果表明,在920℃、40 MPa下保温保压1 h,可获得理想的SiC_f/Ti/Ti_2AlNb叠层复合材料,SiC纤维排布均匀,Ti/Ti_2AlNb界面平直。其中,SiC/Ti界面为0. 8μm的TiC,而Ti/Ti2AlNb界面为α+β双相组织和富B2相,均形成良好的冶金结合,有利于载荷传递,保证材料性能。与Ti/Ti_2AlNb相比,制备的SiC_f/Ti/Ti_2AlNb叠层复合材料的比强度和比刚度分别提高了约16%和28%,实现了材料结构的轻量化。  相似文献   

3.
针对目前航空航天材料轻量增韧的要求,提出将SiC纤维应用于金属基叠层复合材料,通过将叠层结构与纤维增强结构相耦合的方式,采用箔-纤维-箔法结合真空热压技术制备SiC_f/Ti/Ti2AlNb叠层复合材料,研究其组织、力学性能及失效机理,并与未添加SiC纤维的叠层材料进行对比。结果表明,加入SiC纤维增强体后,SiC_f/Ti/Ti2AlNb叠层复合材料在承载过程中,SiC纤维能够改变裂纹扩展方向,延长裂纹扩展路径,从而提高材料韧性。与Ti/Ti2AlNb叠层复合材料相比,由于SiC纤维的加入,SiC_f/Ti/Ti2AlNb叠层复合材料的密度降低了约3%,高温抗拉强度提高了22%,弯曲强度提高了19%,断裂韧性提高了3倍,冲击韧性提高了15%,断裂韧性提高了3倍。  相似文献   

4.
利用Al-Ti-C体系的放热反应,通过真空热压烧结,原位合成了Ti2AlC/TiAl复合材料.借助于XRD,SEM,OM分析及力学性能测试,分析了Ti2AlC/TiAl复合材料微观组织与性能的关系,探讨了Ti2AlC增强增韧TiAl金属间化合物的机制.结果表明,其增强相为Ti2AlC,并有微量的Ti3AlC生成,基体相为TiAl.Ti2AlC的生成,细化了晶粒,其层状结构阻止了裂纹扩展.力学性能测试表明,该材料抗弯强度可达743.84 MPa,断裂韧度可达9.17 MPa.m1/2.  相似文献   

5.
利用TiC-Ti-Al-CNTs体系的原位热压技术制备Ti2AlC增强的钛铝基复合材料。借助XRD和SEM分析不同配方对应产物的相组成、显微结构及性能。结果表明,由于CNTs的掺杂消耗了Ti,导致形成的产物组成不同。对于Ti2AlC/TiAl基复合材料,Ti2AlC增强相呈颗粒状分布,Ti2AlC含量低时,综合性能较好;对于Ti2AlC/TiAl3基复合材料,由于形成了搭接层状结构,弯曲强度和断裂韧度分别为290.97MPa和5.08MPa·m1/2,较TiAl3合金分别提高了79.62%和154%。  相似文献   

6.
采用钛箔作为中间层扩散连接Ti3Al与Ti2AlNb,利用SEM,EDS和XRD等分析方法发现,接头界面组织结构为Ti3Al/α+β双相组织/富B2相/Ti2Al Nb.分别研究了中间层厚度,连接温度,保温时间等工艺参数对接头界面组织形貌以及力学性能的影响.结果表明,当钛箔厚度10μm,T=900℃,t=120 min,p=5 MPa时,接头组织性能最佳.钛箔厚度增加会导致Ti,Al,Nb等元素扩散不均匀;Ti3Al/Ti2Al Nb直接固相扩散连接温度为1 000℃,加入钛中间层可将其降低至900℃,减小了高温热循环对母材性能的损伤,接头整体抗拉强度从795 MPa提升至906MPa;保温时间90~120 min可保证扩散充分连接可靠.  相似文献   

7.
通过离心反应熔铸工艺制备出TiB2/42CrMo层状复合材料,经力学性能测试,该复合材料弯曲强度、断裂韧性与层间剪切强度分别达到1250 ± 35 MPa、75 ± 12 MPa·m1/2与450 ± 20 MPa,因此可以认为正是由于该层状复合材料层间原位生成陶瓷/铁基合金梯度纳米结构复合界面,形成合金/陶瓷相界尺度呈空间连续梯度变化的结构演化,不仅使该材料具有类似金属的典型塑性变形特征,而且又使得该层状复合材料在三点弯曲与短梁层间剪切测试过程中均表现出明显的失效延迟行为。  相似文献   

8.
为了平衡钛基复合材料(titanium matrix composites, TMCs)的强度和延展性,通过电泳沉积将氧化石墨烯(graphene oxides, GOs)沉积到Ti箔表面,然后进行放电等离子烧结(spark plasma sintering, SPS)制备了具有层状结构的原位TiC/Ti复合材料,并对复合材料进行冷轧和退火处理从而进一步优化复合材料的综合力学性能。结果表明,烧结过程中,Ti箔表面的GOs与Ti基体反应形成了原位TiC,从而形成了TiC/Ti层状复合材料,随着沉积时间的增加,分布在Ti层之间的TiC的含量增加;复合材料经过冷轧和退火后,退火态材料的晶粒为等轴晶,且TiC仍然保持层状分布特征。沉积时间120 s时,烧结态材料的抗拉强度(UTS)为555 MPa,伸长率(δ)为15%;退火态材料的抗拉强度为568 MPa,伸长率为27%,相比于烧结态材料,退火态材料达到了较好的强塑性匹配。此外,基于微观组织及断裂行为的分析对复合材料的强韧化机制进行了讨论。  相似文献   

9.
以TiAl金属间化合物增压涡轮与 4 0Cr钢轴的扩散连接为背景 ,提出了复合阻隔法扩散连接工艺 ,并探讨了阻隔效应原理 ,建立了从材料的扩散连接性角度出发的原子半径、原子电负性阻隔层选择原则。利用本文的扩散连接阻隔效应原理 ,确定了TiAl金属间化合物增压涡轮与 4 0Cr钢轴的扩散连接复合阻隔层为Ti/V/Cu ,由此得到的扩散连接接头在V/Cu及Cu/ 4 0Cr的连接界面处出现了对连接性能有利的无限固溶体层 ,在TiAl/Ti的接触面上生成了能够强化接头强度的Ti3 Al TiAl双相层和Ti的固溶体层 ,与TiAl/ 4 0Cr直接扩散连接相比 ,Ti/V/Cu复合阻隔层的加入 ,避免了在TiAl/4 0Cr的接触面上TiC、Ti3 Al、FeAl、FeAl2 金属间化合物脆性相的产生 ,接头强度高达4 2 0MPa ,因此利用本文的阻隔效应原理可以很好地进行复合阻隔层的选择  相似文献   

10.
Plasma Alloying of TiAl with Niobium and Its Wear Resistance   总被引:1,自引:0,他引:1  
将双层辉光离子渗铌技术应用于TiAl合金从而改善其耐磨性能。对TiAl渗铌合金层组织,室温和600℃高温摩擦学性能进行了研究。结果表明,TiAl经离子渗铌后表面形成厚度约12μm的铌合金层,渗层组织致密均匀,其组成物主要包括AlNb2、AlNb3、Ti2AlNb和Nb。铌合金层在600℃的耐磨性明显提高,并且室温耐磨和减摩性能均优于TiAl基材。  相似文献   

11.
采用Ni-Ti复合箔片作为中间层,在990 ℃、低连接压力(0.1 MPa)下,通过瞬时液相(TLP)扩散连接制备了Ti3Al/Ti2AlNb异种合金接头。分析了保温时间(10~90 min)对Ti3Al/Ti2AlNb接头微观结构及力学性能的影响,并研究了TLP扩散连接接头的界面演变和形成机制。结果表明,Ti3Al/Ti2AlNb接头具有典型的“Ti3Al | Al0.5Nb0.5Ti3 | 残余 Ni | NiTi | NiTi2 | 残余 Ti | Al0.5Nb0.5Ti3 | Ti2AlNb”多层梯度结构。随着保温时间的延长,接头的抗剪切强度先增大后减小,当保温时间达到60 min时,Ti3Al/Ti2AlNb接头的抗剪切强度最大,达到167±12 MPa。另外,接头的断裂主要发生在Ti2AlNb/Ti附近的NiTi2层,并向Ti层延伸,呈现出脆性断裂的特征。  相似文献   

12.
基于陶瓷/钛合金之间的液态熔合扩散,采用离心反应熔铸工艺成功制备出TiB2基陶瓷/Ti-6Al-4V合金层状复合材料,并在层间出现TiB2、TiC1-x呈空间尺度连续梯度演化的梯度纳米复合结构。经层间剪切强度、三点弯曲强度与单边切口梁(SENB)断裂韧性测试,该复合材料层间剪切强度、弯曲强度与断裂韧性分别达到335 ± 35 MPa、862 ± 45MPa与45 ± 15 MPa。  相似文献   

13.
Sandwich-like Al/Ti/Al-laminated composites have many advantages such as low density and high specific strength with value in mechanical manufacturing and aerospace engineering. Here, Al/Ti/Al-laminated composites were fabricated by hot roll bonding and subsequent processes: cryorolling(-190 ℃ and-100 ℃), cold rolling(25 ℃), and hot rolling(300 ℃). Their bonding strength and mechanical properties were then studied by an Autograph AGS-X universal electronic testing machine. The results show that cryorolling can improve the interface bonding strength and tensile strength of Al/Ti/Allaminated composites. For the Al/Ti/Al-laminated composites subjected to cryorolling at-100 ℃, they have the highest strength near 260 MPa—this is 48 MPa and 41 MPa higher than the laminated composites subjected to cold and hot rolling, respectively. These results also show the strongest peeling strength. Finally, the mechanisms of the enhancement of bonding strength and mechanical properties of Al/Ti/Al-laminated composites subjected to cryorolling were mainly discussed.  相似文献   

14.
The high-temperature flexural and compressive strengths, and thermal shock behavior in water of Fe2AlB2 were investigated from room-temperature (RT) to 1000 °C. The flexural strength varies in a narrow range of 200–250 MPa from room temperature to 1000 °C, without evident plastic deformation. The compressive strength of Fe2AlB2 decreases gradually from 1992 ± 176 MPa at RT to 1482 ± 127 MPa at 600 °C. However, the further increasing temperature results in quicker decrease of the compressive strength to 245 ± 7 MPa at 1000 °C although no plastic deformation is present in the temperature range of 600–800 °C. The brittle-ductile transition temperature (BDTT) is higher under flexure (>1000 °C) than compression (800–900 °C), which is attributed to the higher shear stress under compression. The water-quenched flexural strength exhibits features consistent with the quasi-static propagation of “long initial cracks”, with a critical temperature difference of 200–300 °C. The deduced cracks contribute to the decreasing retained strength. The uniaxial compress during hot pressing results in a weak anisotropy of mechanical properties.  相似文献   

15.
A fine-grained TiAl alloy with a composition of Ti-47%Al(mole fraction) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering temperature, microstructure and mechanical properties of Ti-47%Al alloy was studied by X-ray diffractometry(XRD), scanning electron microscopy(SEM) and mechanical testing. The results show that the morphology of double mechanical milling powder is regular with size of 20?40 μm. The main phase TiAl and few phases Ti3Al and Ti2Al were observed in the SPS bulk samples. For samples sintered at 1000 °C, the equiaxed crystal grain was achieved with size of 100?250 nm. The samples exhibited compressive and bending properties at room temperature with compressive strength of 2013 MPa, compression ratio of 4.6% and bending strength of 896 MPa. For samples sintered at 1100 °C, the size of equiaxed crystal grain was obviously increased. The SPS bulk samples exhibited uniform microstructures, with equiaxed TiAl phase and lamellar Ti3Al phase were observed. The samples exhibited compressive and bending properties at room temperature with compressive strength of 1990 MPa, compression ratio of 6.0% and bending strength of 705 MPa. The micro-hardness of the SPS bulk samples sintered at 1000 °C is obviously higher than that of the samples sintered at 1100 °C. The compression fracture mode of the SPS TiAl alloy samples is intergranular fracture and the bending fracture mode of the SPS TiAl alloy samples is intergranular rupture and cleavage fracture.  相似文献   

16.
钛利用粉末冶金方法制备钛基复合材料。采用X射线衍射仪、金相显微镜、扫描电镜及力学性能测试仪研究材料成分和烧结温度对显微结构及性能的影响。结果表明:加入ZrO2颗粒能够提高粉末冶金钛基复合材料的力学性能。加入4%ZrO2,在1100°C下烧结4h,得到的钛基复合材料的相对密度为93.9%,屈服强度能达到1380MPa(比纯钛高570MPa),并且具有良好的塑性(极限应变超过24%)。  相似文献   

17.
以Ti,Al,TiO2和Sm2O3为原料,利用原位合成法制备Al2O3/TiAl复合材料;并借助XRD、SEM和力学性能测试,研究Sm2O3掺杂对Al2O3/TiAl复合材料微观结构和力学性能的影响。结果表明:掺杂Sm2O3的Al2O3/TiAl复合材料由γ-TiAl/α2-Ti3Al基体相以及Al2O3、SmAl增强相组成;掺杂Sm2O3细化了复合材料的微观结构,改善了TiAl复合材料的力学性能;当Sm含量为5%(质量分数)时,该复合材料的弯曲强度和断裂韧性达到最大,分别为658.9MPa和10.13MPa·m1/2。  相似文献   

18.
Based on Kohler‘s ternary solution model and Miedema‘s model for calculating the formation heat of binary solution, the integral equation was established for calculating the activity coefficients in ternary alloys and intermetallics. The activity coefficients for components in alloy Ti-5Al-2.5Sn, Ti-6Al-4V and intermetallics TiAI, Ti3Al and Ti2 AlNb were calculated with the equations. The calculated data coincide well with the experimental ones found in literatures. According to the calculated activity coefficients and activities, it can be predicted that the interracial reaction in SiC/Ti3Al composite is more severe than that in composites SiC/Ti2 AINb and SiC/TiAl.  相似文献   

19.
利用箔-纤维-箔法和热压烧结成功制备出Mof/Ti48Al复合材料,并分析了Mo纤维对TiAl合金显微组织和力学性能的影响。结果表明,通过635 ℃,3 MPa,10 h+680 ℃,3 MPa,4 h的两步低温热压,箔材中的Al完全反应完,TiAl箔叠层材料形成致密的Ti/TiAl3板材,合金致密基本无孔洞。再通过1200 ℃,36 h的高温退火,Ti与TiAl3在高温下继续反应,形成γ-TiAl、α-Ti3Al相。高温退火后的钼纤维与基体合金发生了扩散反应,形成了扩散区域,此区域内主要相组成为TiMo、AlMo3,钼纤维与基体合金通过扩散紧密结合在一起,界面未发现孔洞和因应力形成的裂纹。相比于未添加钼纤维的合金,添加10vol%钼纤维的复合材料抗弯性能有明显的提高,钼纤维在合金中起到了强韧化作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号