首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
As environment friendly polymers are required to reduce the green-house gas emissions and global warming, bio-based polyurethane foam (PUF) is attracting interest from the industrial sector and researchers. Bio-based polyols for PUF have been synthesized from various renewable resources, mostly plant oils. The present study explored a novel bio-based PUF produced from a mixture of bio-based polyols synthesized from palm oil and natural rubber. Palm oil-based polyol (POP) was synthesized via an epoxidation reaction of double bonds of palm oil followed by complete oxirane ring-opening. Hydroxy telechelic natural rubber (HTNR) was synthesized by oxidative degradation using periodic acid and sodium borohydride. For comparison, two diisocyanates were used: toluene-2,4-diisocyanate and polymeric methylene diphenyl diisocyanate. POP and HTNR were miscible and all PUFs showed polyhedral semi-closed cells and hardness was in the flexible foam range. One possible application of the novel PUF could be thermal insulation.  相似文献   

2.
Fifty vegetable oil‐based polyols were characterized in terms of their hydroxyl number and their potential of replacing up to 50% of the petroleum‐based polyol in waterborne rigid polyurethane foam applications was evaluated. Polyurethane foams were prepared by reacting isocyanates with polyols containing 50% of vegetable oil‐based polyols and 50% of petroleum‐based polyol and their thermal conductivity, density, and compressive strength were determined. The vegetable oil‐based polyols included epoxidized soybean oil reacted with acetol, commercial soybean oil polyols (soyoils), polyols derived from epoxidized soybean oil and diglycerides, etc. Most of the foams made with polyols containing 50% of vegetable oil‐based polyols were inferior to foams made from 100% petroleum‐based polyol. However, foams made with polyols containing 50% hydroxy soybean oil, epoxidized soybean oil reacted with acetol, and oxidized epoxidized diglyceride of soybean oil not only had superior thermal conductivity, but also better density and compressive strength properties than had foams made from 100% petroleum polyol. Although the epoxidized soybean oil did not have any hydroxyl functional group to react with isocyanate, when used in 50 : 50 blend with the petroleum‐based polyol the resulting polyurethane foams had density versus compressive properties similar to polyurethane foams made from 100% petroleum‐based polyol. The density and compressive strength of foams were affected by the hydroxyl number of polyols, but the thermal conductivity of foams was not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
In this study, we have reported the synthesis of modified polyol from tung oil. The synthesis involves three steps: first, conversion of tung oil to hydroxylated tung oil by hydroxylation; second, alcoholysis with triethanolamine; and finally, the esterification of polyester polyol when reacted with phthalic anhydride (PA) or maleic anhydride (MA). Boric acid is also introduced into the polyol by chemical modification, which enhances the thermal properties of polyurethane foam (PUF). PUF is formulated by the reaction between polyol and isocyanate. A systematic comparison of flame retardancy and mechanical and thermal properties of modified PUF has been examined. The structural properties of modified polyol were characterized by Fourier transform infrared spectroscopy, proton NMR spectroscopy, and gel permeation chromatography, while the thermal and mechanical properties of the formulated PUF were studied by scanning electron microscopy, limiting oxygen index, differential scanning calorimetry, Izod impact, and flexural and compression strength. Thus PUF prepared from modified polyol with a proper distribution of soft and hard segments possesses better mechanical and thermal properties. The PA‐modified foams show better properties compared to unmodified and MA‐modified foams due to the aromaticity and crosslinking behavior of PA. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45786.  相似文献   

4.
Liquefaction is known to be an effective method for converting biomass into a polyol. However, the relationships between bark liquefaction conditions and properties of the resulting foams are unclear. In this study, polyurethane foams (PUF) were made using bark‐based polyols obtained through liquefaction reactions of bark at two different temperatures (90 and 130°C). Through systematic characterization of the PUFs the influence of the liquefied bark and liquefaction conditions on foam properties could be observed. The bark‐based foams had similar foaming kinetics, thermal stability, and glass transition temperatures compared with the PEG‐based control foam. The bark‐based PUF from the polyol obtained at the higher liquefaction temperature showed comparable specific compressive strength to the PEG‐based control foam. Lastly, both bark foams exhibited a high amount of open‐cell content, with the foam made from the lower temperature liquefied polyol having poor cell morphology. This deviation from the controls in the open‐cell content may explain the lower modulus values observed in the bark PUFs due to the lack of cell membrane elastic stretching as a strengthening mechanism. These results demonstrated the influence of the bark liquefaction conditions on foam properties, thereby providing a better fundamental understanding for the practical application of bark‐based PUFs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40599.  相似文献   

5.
采用一步法以异佛尔酮二异氰酸酯和聚醚多元醇为原料,选用A~D4种配比制备了聚氨酯泡沫材料,通过红外光谱仪、扫描电子显微镜、差示扫描量热仪、热重分析仪和噪声振动测试系统等对聚氨酯泡沫的泡孔结构、热稳定性及吸音隔音性能进行了测试.结果表明,聚醚多元醇的用量对聚氨酯泡沫成分未造成差异,聚氨酯泡沫中出现闭孔、半闭孔、开孔并存现...  相似文献   

6.
In this study, biobased polyester-ether polyols derived from meso-lactide and dimer acids were evaluated for flexible polyurethane foams (PUF) applications. Initially, the catalyst concentration was optimized for the biobased PUF containing 30% of biobased polyol (70% petroleum-based polyol). Then, the same formulation was used for biobased PUF synthesis containing 10%–40% of biobased polyols. The performance of biobased PUF was compared with the performance of the control foam made with 100% petroleum-based polyol. The characteristic times (cream, top of the cup, string gel, rise, tack-free) of biobased PUF were determined. The biobased PUF were evaluated for the mechanical (tensile and compressive) and morphological properties. As the wet compression set is important for automotive applications, it was measured for all biobased PUF. The thermal degradation behavior of biobased PUF was also evaluated and compared with the control foam. The effect of different hydroxyl and acid values of polyols on the mechanical properties of biobased PUF is also discussed. The miscibility of all components of PUF formulations is crucial in order to produce a foam with uniform properties. Thus, the miscibility of biobased polyols with commercial petroleum-based polyol was studied.  相似文献   

7.
Rigid polyurethane foams were successfully prepared by blending up to 70 wt% of two different palm oil‐based bio‐polyols with a petrochemical polyether polyol. The bio‐polyols were synthesized by epoxidation–oxirane ring‐opening process using water (PP102) and diethylene glycol (PP147), respectively. Due to the high viscosity of both bio‐polyols the reactive mixture was heated to start the foaming reaction at about 50 °C. Under these conditions, the gelling reactions speed up as the amount of PP147 increases but slow down to a great extent when PP102 is used. The thermal conductivity of modified foams is higher and the closed cell content lower compared to reference ones, even when the bio‐foams present a lower apparent density. However, all foams exhibit reduced water absorption, excellent dimensional stability and better thermal stability at temperatures up to 400 °C than the control foam. Conversely, their mechanical and dynamic mechanical properties become poorer as the PP147 concentration increases and even more so if PP102 is used instead. PP147 foams containing up to 50% bio‐polyol could be used as a green replacement of petroleum‐based ones in applications where excellent behaviour in compression (the most affected properties) is not fundamental, with the additional advantages of reduced density and increased content of bio‐derived components. © 2017 Society of Chemical Industry  相似文献   

8.
This study investigated the physical properties of water‐blown rigid polyurethane (PU) foams made from VORANOL®490 (petroleum‐based polyether polyol) mixed with 0–50% high viscosity (13,000–31,000 cP at 22°C) soy‐polyols. The density of these foams decreased as the soy‐polyol percentage increased. The compressive strength decreased, decreased and then increased, or remained unchanged and then increased with increasing soy‐polyol percentage depending on the viscosity of the soy‐polyol. Foams made from high viscosity (21,000–31,000 cP) soy‐polyols exhibited similar or superior density‐compressive strength properties to the control foam made from 100% VORNAOL® 490. The thermal conductivity of foams containing soy‐polyols was slightly higher than the control foam. The maximal foaming temperatures of foams slightly decreased with increasing soy‐polyol percentage. Micrographs of foams showed that they had many cells in the shape of sphere or polyhedra. With increasing soy‐polyol percentage, the cell size decreased, and the cell number increased. Based on the analysis of isocyanate content and compressive strength of foams, it was concluded that rigid PU foams could be made by replacing 50% petroleum‐based polyol with a high viscosity soy‐polyol resulting in a 30% reduction in the isocyanate content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
采用可再生的醇解蓖麻油多元醇为原料,与液溴进行加成反应制备溴化蓖麻油多元醇,通过红外光谱证实发生了溴化反应,并测定了产物粘度、羟值、酸值.通过发泡实验和氧指数、烟密度、水平燃烧等测试手段,考察了溴化蓖麻油基聚氨酯硬泡发泡参数和阻燃性质,并与工业级阻燃荆雅保RB-79制备的聚氨酯硬泡进行比较.结果表明,由溴化蓖麻油多元醇...  相似文献   

10.
Waste polyurethane rigid foam (PUF) is recycled by the glycolysis process. The recycled product is used in a polyol blend, applied in a new foam formulation. Polyurethane rigid foams formulated by recycled polyols are highly dense compared to rigid foams formulated by virgin polyols. As these foams are mostly used in insulation, they make an extra mass to the main product or system that is insulated. Therefore, it is important to decrease their density as much as possible.

Some density modifiers such as starch, sucrose, and REZOL® IL800 were investigated to recognize their effect on PUF's density.  相似文献   

11.
The aim of this study was to evaluate the possibility of using polyols derived from liquefied cork in the production of novel bio‐based polyurethane foams (PUFs). For that purpose, different liquefaction conditions were used at atmospheric pressure and moderate temperature where poly(ethylene glycol) and glycerol were used as solvents and sulfuric acid as catalyst. The ensuing polyols were used to produce foams which were characterized using structural, morphological, thermal and mechanical analyses to demonstrate that liquefaction conditions play a crucial role in the properties of the foams. The resulting foams exhibited the typical cellular structure of PUFs with low densities (57.4–70.7 kg m?3) and low thermal conductivities (0.038–0.040 W m?1 K?1). However, the mechanical properties differed significantly depending on the liquefaction conditions. The best stress–strain results were obtained for PUFs prepared using the polyol with lowest IOH and water content (Young's modulus of 475.0 kPa, compressive stress (σ10%) of 34.6 kPa and toughness of 7397.1 J m?3). This PUF was thermally stable up to 200 °C and presented a glass transition temperature of around 27 °C. The results obtained demonstrate that these polyols from liquefied cork yield PUFs that are adequate materials for insulation applications. © 2014 Society of Chemical Industry  相似文献   

12.
Glycolysis reaction kinetics of methylene diphenyl diisocyanate‐based water‐blown polyurethane foams was examined by gel permeation chromatography. Glycolysates were reacted with butyl glycidyl ether to convert toxic aromatic amines to polyols, and their products were identified by 1H‐NMR spectroscopy. To examine the quality of recycled polyol, polyurethane foams were reprepared using the virgin and recycled polyol mixtures with varying compositions. Cell structures and sizes of reprepared foams were similar to those of original ones when the recycled polyols were mixed up to 30 wt %. Density, thermal conductivity, and flexural strength of the reprepared foams were compared with those of the original ones, and no difference was observed below the recycled polyol concentration of 30 wt %. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2646–2656, 2000  相似文献   

13.
Rigid polyurethane (PU) foams were prepared using three North American seed oil starting materials. Polyol with terminal primary hydroxyl groups synthesized from canola oil by ozonolysis and hydrogenation based technology, commercially available soybean based polyol and crude castor oil were reacted with aromatic diphenylmethane diisocyanate to prepare the foams. Their physical and thermal properties were studied and compared using dynamic mechanical analysis and thermogravimetric analysis techniques, and their cellular structures were investigated by scanning electron microscope. The chemical diversity of the starting materials allowed the evaluation of the effect of dangling chain on the properties of the foams. The reactivity of soybean oil-derived polyols and of unrefined crude castor oil were found to be lower than that of the canola based polyol as shown by their processing parameters (cream, rising and gel times) and FTIR. Canola-PU foam demonstrated better compressive properties than Soybean-PU foam but less than Castor-PU foam. The differences in performance were found to be related to the differences in the number and position of OH-groups and dangling chains in the starting materials, and to the differences in cellular structure.  相似文献   

14.
Oleic acid is a typical unsaturated fatty acid that is found widely in vegetable oils. The objective of this investigation was to produce a new type of oleic‐based polyol from oleic acid. Possible advantages of this approach include the production of high‐performance polyurethane materials from renewable resources and value‐added research for oleic acid. Oleic‐based polyols were synthesized by a three‐step process consisting of epoxidation and ring‐opening reaction, followed by esterification. The synthesized polyols appeared as a viscous liquid at room temperature with hydroxyl numbers from 307 to 425 mg KOH/g. Preparation of polyurethane foams using oleic‐based polyols and isocyanate was studied. An environmentally friendly blowing agent, HCFC‐141b, together with a small amount of water, was used. The synthesized foams were characterized by FTIR, SEM, and TG/DSC. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
The impact of replacing three polyether polyols with different levels of a single palm olein‐based natural oil polyol (NOP) was systematically correlated with the changes in foaming reactivity, cell structure, physico‐mechanical properties, and morphology of viscoelastic (VE) foams. The data show that replacing the polyether polyols with the NOP slightly increased the rate of the foaming reactivity. Increasing the NOP content resulted in increased cell size and cells remained fully open. Increased NOP content contributed to higher load bearing properties of VE foam, which can be attributed to higher functionality of NOP compared to polyether polyols. Addition of the NOP slightly increased the resilience of the foams, however, the hysteresis which is the measure of energy absorption remained mostly unaffected. Age properties, characterized by dry and humid compression sets, were mostly unaffected by the replacement of the polyether polyol with the NOP. The addition of NOP did not impact the morphology of the VE foam polymer matrix, which appears to retain a low degree of hard and soft segment domain separation. Overall, the results demonstrate a feasibility that the NOP can be used to partially replace the polyether polyols in VE polyurethane foams without significant impact on the functional performance.  相似文献   

16.
Polyurethane foams are in general flammable and their flammability can be controlled by adding flame‐retardant (FR) materials. Reactive FR have the advantage of making strong bond within the polyurethane chains to provide excellent FR over time without compromising physico‐mechanical properties. Here, phenyl phosphonic acid and propylene oxide‐based reactive FR polyol was synthesized and used along with limonene based polyol for preparation of FR polyurethanes. All the obtained foams showed higher closed cell content (above 96%). By the addition of FR–polyol, the compressive strength of the foams showed 160% increment which could be due to reactive nature of FR–polyol. Moreover, 1.5 wt % of phosphorus (P) content reduced the self‐extinguishing time of the foam from 81 (28% weight loss) to 11.2 s (weight loss of 9.8%). Cone test showed 68.6% reduction in peak heat release rate along with 23.4% reduction in thermal heat release. The change in char structure of carbon after burning was analyzed using Raman spectra which, suggests increment in the graphitic phase of the carbon over increased concentration of phosphorus. It can be concluded from this study that phosphorous based polyol could be blended with bio‐based polyols to prepare highly FR and superior physico‐mechanical rigid polyurethane foams. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46224.  相似文献   

17.
Both HCFC‐ and pentane‐blown rigid polyurethane foams have been prepared from polyols derived from soybean oil. The effect of formulation variables on foam properties was studied by altering the types and amounts of catalyst, surfactant, water, crosslinker, blowing agent, and isocyanate, respectively. While compressive strength of the soy foams is optimal at 2 pph of surfactant B‐8404, it increases with increasing the amount of water, glycerin, and isocyanate. It also increases linearly with foam density. These foams were found to have comparable mechanical and thermoinsulating properties to foams of petrochemical origin. A comparison in the thermal and thermo‐oxidative behaviors of soy‐ and PPO‐based foams revealed that the former is more stable toward both thermal degradation and thermal oxidation. The lack of ether linkages in the soy‐based rather than in PPO‐based polyols is thought to be the origin of improved thermal and thermo‐oxidative stabilities of soy‐based foams. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 467–473, 2000  相似文献   

18.
The reactions between polymeric diphenyl methane diisocyanate (polymeric MDI) and conventional polyols to produce foamed polyurethane products are well documented and published. Current polyurethane foams are predominantly produced from these reactions whereby the polyol components are usually obtained from petrochemical processes. This article describes a new development in polyurethane foam technology whereby a renewable source of polyol derived from refined–bleached–deodorized (RBD) palm oil is used to produce polyurethane foams. Using very basic foam formulation, rigid polyurethane foams were produced with carbon dioxide as the blowing agent generated from the reaction between excess polymeric MDI with water. The foams produced from this derivatized RBD palm oil have densities in excess of 200 kg/m3 and with compression strengths greater than 1 MPa. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 509–515, 1998  相似文献   

19.
The composition of crude algal oil was analyzed and determined by several methods. Oil was converted to polyols by ozonolysis, epoxidation, and hydroformylation. Ozonolysis gave a polyol with lighter color but a low OH number and was unsuitable for polyurethane applications. Epoxidation also improved the color and gave a polyol with an OH number around 150 mg KOH/g, which with diphenylmethane diisocyanate gave a homogeneous, rubbery, transparent sheet. Desirable rigid foams were prepared with the addition of water to the formulation. Hydroformylation was carried out successfully giving an OH number of about 150 mg KOH/g, but the polyol was black. Casting the polyurethane sheet was difficult due to the very high reactivity of the polyol. Polyurethane foam of lower quality than from epoxidation polyol was obtained. More work on optimization of the foaming system would improve the foam. Crude algal oil is a viable starting material for the production of polyols. Better results would be obtained from refined algal oils.  相似文献   

20.
A phosphorus containing polyether polyol (THPO‐PO) was synthesized by polymerization between tris(hydroxymethyl) phosphine oxide (THPO) and propylene oxide (PO). A soybean oil‐based polyol(SBP) was synthesized from epoxidized soybean oil by ring‐opening reaction with lactic acid. The corresponding polyurethane foams (PUFs) were prepared by mixing SBP with THPO‐PO. The density of these foams decreased as the content of THPO‐PO increased. The yield strength of PUFs was observed to be decreased firstly and then increased with the addition of THPO‐PO. Microphotographs of PUFs were examined by scanning electron microscope which displayed the cells as spherical or polyhedral. The thermal degradation and fire behavior of PUFs were investigated by thermogravimetric analysis, limiting oxygen index (LOI), and UL‐94 test. Although the thermal stability of PUFs were decreased with increasing THPO‐PO percentage, the flame retardancy of PUFs were improved. The LOI value increased to 27.5 with 40% THPO‐PO. THPO‐PO in sequence worked in inhibiting flame and forming phosphorus‐rich char layer, thus endowing PUFs with the increased flame‐retardant performance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45779.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号