首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以不规则状钠还原钽粉为原料,采用射频等离子体球化技术制备高纯致密球形钽粉,实现了还原钽粉的球化、致密化和纯化。研究了送粉速率、载气流量、反应室压力等工艺参数对钽粉球化率及粉体特性的影响,并探索了球化钽粉的选区激光熔化成形适用性。结果表明:不规则状钠还原钽粉,经射频等离子体球化处理后可得到表面光滑、内部致密、高纯低氧、球化率可达100%的球形钽粉。球化处理后,钽粉粒度分布变窄。钽粉的球化率随送粉速率的增大而降低,随载气流量的增加先升高后降低。弱负压更有利于获得较高球化率的钽粉。随着球化率的提高,钽粉的流动性能显著改善,松装密度与振实密度明显提高。当送粉速率为30 g/min,载气流量为5.0 L/min,反应室压力为82.7 kPa时,球形钽粉霍尔流速提高到5.98 s/50g,与不规则形钠还原钽粉相比,松装密度由3.503 g/cm~3提高到9.463 g/cm~3,振实密度由5.344g/cm~3提高到10.433g/cm~3,且氧含量由0.076%降低至0.0481%。另外,射频等离子体球化钽粉具有良好的选区激光熔化成形适用性,其试样致密度ρ≥99.5%,抗拉强度σ_b=693 MPa,屈服强度σ_(0.2)=616 MPa,延伸率δ=28.5%。  相似文献   

2.
微米级钽粉(Ta)在生物医疗增材制造和其它制造领域具有广阔的应用前景。采用射频热等离子体对不规则钽粉进行球化处理以改善其流动性,对等离子体球化处理前后的钽粉进行了表征,并分析了球化过程中卫星粉的形成过程与机制。结果表明,经等离子体球化后的钽粉具有较为理想的球形度和光滑的表面,其霍尔流动性和表观密度分别从13.6 s·(50 g)-1提高到6.73 s·(50 g)-1和6.83 g·cm-3提升至9.06 g·cm-3,钽粉的球化率和球形度分别可约达95.2%和0.92;球化过程中卫星粉的形成主要是因液滴的碰撞所致,且随着送粉速度的增加,液滴碰撞概率增大,液滴的凝并使球形颗粒的粒径增大。  相似文献   

3.
感应等离子体制备高纯致密球形钼粉研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用感应等离子体技术制备出高纯致密球形钼粉,实现了钼粉的球化、致密化、细化和纯化,同时研究了感应等离子体功率和原料粉粒度对球化率的影响。采用扫描电子显微镜、X射线衍射仪和激光粒度分析仪对球化处理前后粉末的形貌、物相和粒度分布进行测试和分析。结果表明,形状不规则的原料钼粉,经等离子体球化处理后得到球形度好、表面光滑、分散性良好、球化率几乎可达100%的球形钼粉。球化处理后,钼粉粒度变细,且粒度分布更集中。相同工艺条件下,随着等离子体功率的增加,钼粉的球化率先增大后降低,当等离子体功率为25 kW时钼粉球化效果最好,粒度较小的钼粉球化率较高。随着钼粉球化率的提高,粉末的流动性得到显著改善,松装密度也得到提高。钼粉末的流动性由40 s/50 g提高为11 s/50 g,松装密度由2.3 g/cm~3提高到6.1 g/cm~3。  相似文献   

4.
研究了原料钼粉携带气体流量和钼粉加料速率对感应等离子球化钼粉形貌和粒度的影响。球化前后钼粉的微观形貌用扫描电镜(SEM)观测,粉体物相用X射线衍射仪(XRD)分析,等离子体处理前后钼粉的松装密度和振实密度分别用斯科特容量计和振实密度仪检测。结果表明,等离子体处理后产品仍为纯金属钼粉,形状由不规则变为球形,颗粒平均粒径由原料的40~70 μm减小至35~60 μm,振实密度由2.5 g/cm3提高到5.8 g/cm3。制备球形钼粉最佳工艺参数为:加料速率45 g/min,携带气体流量0.6 m3/h。感应等离子体是制备高纯致密球形钼粉的有效技术。  相似文献   

5.
采用射频等离子体法制备了高度球形化的TC4(Ti6Al4V)合金粉末。主要探究仪器送粉喷嘴高度、产生等离子体的功率、反应室的压力、原料粉体的粒度分布、送粉速率以及载气的气流速率等对于粉体球化率的影响。通过SEM图像观察粉体的形貌变化并计算粉体的球化率,利用XRD图谱测定球化前后粉体相结构。结果表明,通过观察球化粉末横截面可知粉末为实心球体且表面光滑,球化后粉末流动性明显提高,松装密度增大,粒度分布变窄,适合3D打印等应用技术对于合金粉体的要求。实验中,调节送粉喷嘴高度为12.5 cm,反应室压力为101.36 kPa,送粉速率为1.742 g/min,产生等离子气的功率为27.2 kW且控制原料粉体的粒度分布在38~63μm时,可使得球化率达到99%,明显高于其他球化粉末制备方法。  相似文献   

6.
以不规则形的钕铁硼粉为原料,使用射频等离子体球化处理工艺,制备球形钕铁硼粉.研究了原料的加料速率和粉末粒度对粉末球化率的影响.通过扫描电子显微镜观察对比了等离子球化处理前后粉末及截面形貌,采用X射线衍射方法测试分析了球化过程中氧化物的生成.检测了球化前后粉末的松装密度及其粒度分布.结果表明:不规则形状的钕铁硼粉经等离子球化处理后其球化率可达到100%,松装密度由2.778 g/cm3提高到3.785 g/cm3,粉末流动性由43.3 s/50 g提高到27.5 s/50 g.该粉末适用于凝胶注膜成型及注射成型.  相似文献   

7.
球形钨粉以其良好的流动性、高的松装密度和振实密度广泛应用于喷涂、增材制造等材料制备领域。本文以不规则形状钨粉颗粒为原料,采用射频等离子球化技术制备球形钨粉,并对球形钨粉进行铺粉及成形实验效果评价。在射频等离子球化过程中,研究球化工艺参数(送粉速率、送粉位置)和原料粉末形态对球化结果的影响。在铺粉实验方面,研究粉末特征和铺粉层厚对铺粉效果的影响。采用扫描电子显微镜、激光粒度分析仪和BT-100粉体综合特性测试仪对球化处理前后粉末的形貌、粒度、流动性、松装密度和振实密度进行测试和分析。结果表明:经过球化处理后,钨粉颗粒呈规则球形,表面光滑,球化率可达100%,流动性、松装密度和振实密度得到明显提高。球化率高的粉末流动性好,铺粉效果好;随着层厚的增加,铺粉效果逐渐得到改善;采用合适粒径的球形钨粉打印的钨薄壁件表面相对光洁,尺寸精度高。  相似文献   

8.
采用等离子体球化处理和放电等离子烧结(SPS)相结合的方法制备了钡钨阴极多孔钨基体。研究了等离子体球化处理工艺参数对钨粉的球化率和性能的影响规律,以及SPS制备的多孔钨基体的微观组织和相应钡钨阴极的发射性能。结果表明:当喂粉速率和载气流量分别为2.4 g/min和4.0 L/min时,可得到球化率大于98%,且表面光滑、球形度高的球形钨粉;经球化处理后,钨粉的松装密度和流动性显著提高。与原料钨粉相比,采用球形钨粉制备得到的多孔钨基体的孔隙结构和分布均得到显著改善,且开孔率由18.3%提高至19.7%;相应的钡钨阴极在1050℃下的饱和脉冲发射电流密度由8.7 A/cm~2提高至11.2 A/cm~2。  相似文献   

9.
气体流量对射频等离子体球化GH4169合金粉末的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
尹燕  赵超  潘存良  路超  张瑞华 《焊接学报》2019,40(11):100-105
采用射频等离子体球化技术对多次激光3D打印废弃的不规则GH4169合金粉末进行二次改造,研究载气、氢气流量对球化粉末效果的影响机理.利用扫描电镜、霍尔流动仪、振实密度测试仪及激光粒度分析仪对球化前后粉末的形貌、流动性、松装比及粒度分布进行分析.结果表明,载气流量越大,粉末在等离子体火焰中停留时间越短、运动絮乱,球化率越低;氢气流量越大,单位时间内等离子体与粉末热交换越大,球化生产效率越高.经球化处理的GH4169合金粉末的流动性、松装比得到了显著的改善,粉末颗粒平均粒径增加,粒径分布变窄.  相似文献   

10.
本文采用射频等离子体球化法制备的球形钽粉进行选区激光熔化(SLM)成形致密化研究。通过工艺参数优化,在扫描速度为650 mm/s和激光能量为240 W条件下,获得了完全致密的钽样件。由于原始粉末具有较高的流动性,激光成形钽样件表现出较好的成形性能和表面质量。微观组织表征结果显示,样件顶面和侧面分别呈现等轴晶和柱状晶。EBSD结果表明,在制造方向呈现<111>择优取向。最高显微硬度和抗拉强度分别达到296.2 Hv和697 MPa,致密样件的延伸率也显著提高到28.5%。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号