首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
以加工罗非鱼片废弃的下脚料蛋白和碱性蛋白酶为原料,以水解度为指标,考察温度、底物质量浓度、酶用量及pH等因素对碱性蛋白酶酶解罗非鱼下脚料蛋白水解度的影响。得到碱性蛋白酶水解罗非鱼下脚料蛋白的适宜工艺条件为:酶解温度50℃、底物质量浓度20g/L、酶用量为0.067g/L、pH9.50、反应时间180min,此时水解度为22.00%。同时得到50℃条件下酶失活常数Kd为37.9min-1,反应速率常数K2为244.2min-1、米氏常数KM为29.27g/L、最大反应速度Vmax为28.41g/(min·L);并建立了相应的水解动力学模型。验证实验表明:建立的水解动力学模型与实际水解过程基本吻合。  相似文献   

2.
以大米蛋白为原料,用碱性蛋白酶Alcalase2.4 L酶解大米蛋白制备小分子多肽。采用单因素试验方法优化酶解条件,考察酶解过程中pH、加酶量、底物浓度和温度酶解初速度的影响,并建立了酶解动力学方程。研究了最优酶解条件下酶解过程中酶解产物的分子量分布状态。结果表明,Alcalase2.4 L酶解大米蛋白的最优pH 8.5、温度65℃、酶底比0.096 AU/g(底物),在酶解过程中存在产物抑制,在研究的底物浓度范围内(90 g/kg)不存在底物抑制。主要动力学参数为:Km为5.76(g·min)/mmol,Vmax为0.67mmol/(kg·min),k2为0.28 mmol/(AU·min)。酶解动力学方程为:1/V0=56.29/[S0][E0]+1/0.28[E0]。酶解至3 h时水解度达到16%,酶解产物的分子量在264~584 u之间的组分达到94%,酶解3 h后酶解产物的分子量分布基本保持不变。本研究结果为制备大米蛋白小分子活性肽奠定基础。  相似文献   

3.
为掌握碱性蛋白酶对荞麦蛋白的酶解特性,实现对荞麦蛋白的深加工利用及生物活性肽的开发.采用pH-stat法,系统分析了底物浓度、酶浓度、pH及温度对荞麦蛋白水解度的影响,并运用对数函数对水解动力学过程进行描述和拟合.结果表明:在碱性蛋白酶水解荞麦蛋白的过程中,水解度随水解时间的变化呈现对数函数关系,可用公式h=(1/b)ln(1+abt)对其水解动力学过程进行描述;底物具有促进水解反应速度和抑制酶活性的双重作用,在低底物浓度条件下,荞麦蛋白的水解度较高;当底物浓度增加到6%时,蛋白水解度与底物浓度的关系曲线出现转折,水解度较低且趋于平缓;在酶浓度为0.002 g/mL时,水解反应的临界底物浓度为12.27%;在pH9.8、水解温度为50℃、水解时间30 min的条件下,碱性蛋白酶催化水解荞麦蛋白的动力学方程为h=1.218 2 ln(1+12.6([E]/[S]+0.58)t)  相似文献   

4.
海洋鱼蛋白可控酶解动力学模型的研究   总被引:3,自引:0,他引:3  
应用数学推导结合实验研究的方法,以沙丁鱼蛋白为底物.研究胰蛋白酶可控酶解过程的动力学模型及其相关参数,结果如下:DH=9.804ln[1 (1.701E0/S0-0.00367)]和R=(16.678E0-0.036S0)exp[-0.102(DH)],动力学常数k2=16.678/min和Kd=1.7015/min,最低临界初始蛋白酶浓度E0=c0S0,最大临界底物初始浓度S0=E0/c0,c0=2.159x10^-3。与实验结果相比较,证实动力学模型与实验结果非常吻合,说明它具有很好的实际应用价值。  相似文献   

5.
2709碱性蛋白酶酶解大豆分离蛋白的研究   总被引:1,自引:0,他引:1  
从预处理温度、预处理时间、底物浓度、加酶量、酶解温度、酶解时间等方面研究了2709碱性蛋白酶对大豆分离蛋白酶解的影响,并运用正交试验设计和方差分析优化了酶解条件。结果表明,在70℃预处理10min水解度得到极大的提高。单因素正交试验结果表明:以3%底物浓度,4000U/gSPI加酶量,50℃酶解4、5h效果较好。方差分析结果表明,加酶量和酶解温度对水解度影响显著,酶解时间和底物浓度对水解度影响不显著。  相似文献   

6.
Alcalase碱性蛋白酶水解棉籽蛋白动力学研究   总被引:1,自引:0,他引:1  
采用pH-stat法对Alcalase碱性蛋白酶水解棉籽蛋白的动力学特性进行了研究,确定了Alcalase碱性蛋白酶水解棉籽蛋白的最佳反应条件:温度60℃、pH8.0、酶与底物比750 U/g、底物质量分数5%,水解300 min后水解度可以达到12.43%;动力学参数:Km=6.013 3 mol/L、vmax=9.549 3×10-3mol/(min·L).  相似文献   

7.
赵电波  陈茜  白艳红  张丽尧 《食品科技》2011,(9):161-164,169
研究采用均匀实验优化了Protamex复合蛋白酶酶解猪骨的工艺,并利用SPSS软件对酶解过程进行数学模拟,得到了Protamex复合蛋白酶酶解猪骨的动力学模型,同时测定了米氏常数Km与最大反应速率Vmax。结果表明,酶解时间5.7h,酶解温度45℃,pH为7.6,加酶量0.49%,料液比为1:22.7时,水解度最大为10.21%;酶解动力学方程为Y=1.918lnx-0.779,符合对数方程;Km=221.27mmol/L,Vmax=0.1448mmol/L·min。  相似文献   

8.
采用酶法从梭子蟹下脚料中制取蛋白水解物,并利用单因素试验和正交试验对最佳酶解条件进行研究。结果表明,梭子蟹下脚料最适的水解蛋白酶为碱性蛋白酶;在液料比3:1 时,最适酶解条件为温度55℃、时间3.0h、pH8.5、加酶量(E/S)1000U/g,此时水解度为26.68%,其中温度对水解度的影响最大,其次为加酶量;蛋白水解物的分子量小于10kD,蛋白水解呈味氨基酸含量为412.6mg/L,占氨基酸总量的39.42%,具有很高的营养价值和应用前景。  相似文献   

9.
通过对酶法水解玉米粉蛋白制备多肽的工艺进行了研究,试验以水解度(DH%)和氯溶解指数(X%)为指标确定了最佳酶解工艺条件.结果表明,在pH值10.5,酶解温度60℃,酶与底物比5%,底物质量分数8%的条件下酶解4 h,可使水解度和氮溶解指数分别达到49.7%和51.2%.  相似文献   

10.
研究Flavourzyme风味蛋白酶水解小麦面筋蛋白的酶解效率和反应动力学特性,调控和优化面筋蛋白的酶解工艺。研究结果表明,在该酶的最适作用条件(pH 6.0,55℃)下,10%底物,1%加酶量(酶与底物比),酶解12 h,可获得较高水解度(DH30%)和蛋白回收率(30%)。通过数学推导结合试验研究,建立了该水解反应的动力学模型。水解度(DH)和水解时间(t)的关系:DH=12.35ln[1+(2.923E0/S0-0.015)t],酶失活常数Kd约3 min-1。与试验结果相比,模型计算值与试验值吻合较好,说明该模型具有很好的实际应用价值。  相似文献   

11.
采用pH-stat法对Alcalase2.4L FG酶水解米渣蛋白的动力学特性进行了比较系统探讨:(1)探讨了温度、酶浓度([E]/[S])、底物浓度、pH值和水解时间对水解度的影响,并确定了比较理想的工艺参数:(2)探讨了该酶催化水解米渣蛋白反应的动力学参数:Km=0.6598mol/L,Vmax=0.00351mol/min·L;(3)探讨了该酶催化水解米渣蛋白反应的初级阶段的动力学特性,为米渣的进一步开发提供理论依据。  相似文献   

12.
响应曲面法优化复合酶水解河蟹工艺   总被引:2,自引:0,他引:2  
王芳英  杜先锋  徐敏  刘军 《食品科学》2011,32(14):165-170
研究木瓜蛋白酶和复合风味酶水解河蟹的工艺条件。在单因素试验基础上,通过SAS数据统计分析软件,运用四因素三水平的响应面设计方法,建立复合酶解蟹肉蛋白的二次多项数学模型,以水解度为响应值作响应面和等高线。结果表明:最适水解工艺为pH5、温度55℃、木瓜蛋白酶加酶量为5500U的条件下水解1.5h后再加入2LAPU的风味蛋白酶水解4.5h(酶解时间6h),此时的水解度预测值为31.19%、实测值30.08%,相对偏差为3.69%。最后,探索将水解液初步制成海鲜调味品。在上述条件下模拟出的酶解液鲜味明显且最后成品风味浓郁、色泽鲜黄、便于调味。  相似文献   

13.
复合法制备河蟹蛋白水解液工艺条件的研究   总被引:1,自引:0,他引:1  
选用紫外照射、木瓜蛋白酶水解法制备河蟹蛋白水解液,确定加酶量、酶解时间、温度对河蟹水解液游离氨基酸值的影响,并考察了加盐量对水解液后期发酵中挥发性盐基氮值的影响。结果表明,紫外线照射可促进河蟹的自溶,照射时间以20min最佳。木瓜蛋白酶的最适反应条件为加酶量3500U/g,酶解温度60℃,酶解时间3h,后期发酵条件为加盐量18%,55℃发酵6d。采用紫外线和酶法结合制备,河蟹蛋白水解液可作为多种食品的基料。  相似文献   

14.
内肽酶与端解酶水解花生粕蛋白的研究   总被引:22,自引:2,他引:20  
林勉  刘通讯 《食品科学》2000,21(1):22-25
利用内肽酶与端解酶对花生粕蛋白的水解进行了研究,并分析了不同水解时间氨基酸含量的变化。  相似文献   

15.
酶法有限水解米渣蛋白动力学研究   总被引:2,自引:0,他引:2  
采用pH-stat法对Alcalase 2.4L FG酶有限水解米渣蛋白动力学特性进行了探讨。探讨了温度、酶浓度(mL/120mL水)、底物浓度(g渣/120mL水)、pH值和水解时间对水解度的影响,并确定了比较理想的工艺参数;探讨了该酶催化水解米渣蛋白反应的动力学特性,并在理论上计算出临界底物浓度为22.25g渣/120mL水;建立有限水解动力学模型,验证实验结果表明,模型预测的最大相对误差小于10%。  相似文献   

16.
以大豆分离蛋白为底物,通过单因素试验和正交试验,确定超声和Alcalase 酶复合处理对大豆分离蛋白水解的最佳条件。结果表明,最佳水解条件为大豆分离蛋白质量分数5.0%、超声处理时间30min、加酶量5.0%、酶解pH8.0、酶解温度55℃、酶解时间4.0h,在此条件下,大豆分离蛋白水解度为12.21%。  相似文献   

17.
以水解度和蛋白质残留量为指标,研究温度、pH、酶用量及蛋清浓度对Flavourzyme酶解蛋清蛋白的影响,并通过正交试验来确定其最佳工艺。结果是温度55℃、pH6.5、加酶量为质量分数6%、蛋清料液质量体积比1 g:5 m L为最佳工艺参数。在该条件下,6 h酶解物的蛋白质残留率为27.68%,水解度为38.75%,水解物的相对分子质量大部分集中在300以下,即主要以游离氨基酸及二肽形式存在。  相似文献   

18.
蛋白质水解速率和水解程度不仅依赖于酸或酶的浓度和水解时间,而且依赖于pH值和温度。目前所报道过的水解动力学模型不能用一个统一的方程来描述所有的这些影响。本文提出了一个水解度-酸或酶浓度-pH值-温度-水解时间的相互关系模型,并且用5个例子(2个酸水解和3个酶水解)说明了模型的可用性,模拟效果都令人满意。同时,使用这个模型能定量计算出最优水解条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号