共查询到20条相似文献,搜索用时 15 毫秒
1.
Seyedeh Nooshin Banitaba Dariush Semnani Elahe Heydari‐Soureshjani Behzad Rezaei Ali Asghar Ensafi 《Polymer International》2019,68(10):1787-1794
Nanofibrous solid polymer electrolytes were prepared using the electrospinning method. These nanofibres were constructed from poly(ethylene oxide), lithium perchlorate and ethylene carbonate, which were incorporated with multi‐walled carbon nanotube (MWCNT) and graphene oxide (GO). The morphological properties of the as‐prepared electrolytes and the interaction between the components of the composites were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. X‐ray spectra and differential scanning calorimetry indicated an increase in amorphous regions of the nanofibrous electrolytes on addition of the fillers. However, the crystalline regions were increased on incorporation of fillers into polymeric film electrolytes. The conductivity values of the nanofibrous electrolytes reached 0.048 and 0.057 mS cm?1 when 0.35 wt% MWCNT and 0.21 wt % GO were introduced into the nanofibrous structures, respectively. The capacity and cycling stability of the nanofibrous electrolytes were improved by incorporation of MWCNT filler. Furthermore, stress and elongation modulus were improved at low MWCNT and GO filler contents. Results revealed that the nanofibrous structures could be promising candidates as solvent‐free electrolytes applicable in lithium ion batteries. © 2019 Society of Chemical Industry 相似文献
2.
Novel single‐ion conducting polymer electrolytes based on electrospun poly(lithium 2‐acrylamido‐2‐methylpropanesulfonic acid) (PAMPSLi) membranes were prepared for lithium‐ion batteries. The preparation started with the synthesis of polymeric lithium salt PAMPSLi by free‐radical polymerization of 2‐acrylamido‐2‐methylpropanesulfonic acid, followed by ion‐exchange of H+ with Li+. Then, the electrospun PAMPSLi membranes were prepared by electrospinning technology, and the resultant PAMPSLi fiber‐based polymer electrolytes were fabricated by immersing the electrospun membranes into a plasticizer composed of ethylene carbonate and dimethyl carbonate. PAMPSLi exhibited high thermal stability and its decomposition did not occur until 304°C. The specific surface area of the electrospun PAMPSLi membranes was raised from 9.9 m2/g to 19.5 m2/g by varying the solvent composition of polymer solutions. The ionic conductivity of the resultant PAMPSLi fiber‐based polymer electrolytes at 20°C increased from 0.815 × 10?5 S/cm to 2.12 × 10?5 S/cm with the increase of the specific surface area. The polymer electrolytes exhibited good dimensional stability and electrochemical stability up to 4.4 V vs. Li+/Li. These results show that the PAMPSLi fiber‐based polymer electrolytes are promising materials for lithium‐ion batteries. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
3.
Seyedeh N Banitaba Dariush Semnani Behzad Rezaei Ali A Ensafi 《Polymer International》2019,68(4):746-754
We report the synthesis of all‐solid‐state polymeric electrolytes based on electrospun nanofibers. These nanofibers are composed of polyethylene oxide (PEO) as the matrix, lithium perchlorate (LiClO4) as the lithium salt and propylene carbonate (PC) as the plasticizer. The effects of the PEO, LiClO4 and PC ratios on the morphological, mechanical and electrochemical characteristics were investigated using the response surface method (RSM) and analysis of variance test. The prepared nanofibrous electrolytes were characterized using SEM, Fourier transform infrared, XRD and DSC analyses. Conductivity measurements and tensile tests were conducted on the prepared electrolytes. The results show that the average diameter of the nanofibers decreased on reduction of the PEO concentration and addition of PC and LiClO4. Fourier transport infrared analysis confirmed the complexation between PEO and the additives. The highest conductivity was 0.05 mS cm?1 at room temperature for the nanofibrous electrolyte with the lowest PEO concentration and the highest ratio of LiClO4. The optimum nanofibrous electrolyte showed stable cycling over 30 cycles. The conductivity of a polymer film electrolyte was 29 times lower than that of the prepared nanofibrous electrolyte with similar chemical composition. Furthermore, significant fading in mechanical properties was observed on addition of the PC plasticizer. The results obtained imply that further optimization might lead to practical uses of nanofibrous electrolytes in lithium ion batteries. © 2019 Society of Chemical Industry 相似文献
4.
Minghao Gao Chao Wang Lin Zhu Qin Cheng Xin Xu Gewen Xu Yiping Huang Junjie Bao 《Polymer International》2019,68(3):473-480
To improve the electrochemical properties and enhance the mechanical strength of solid polymer electrolytes, series of composite polymer electrolytes (CPEs) were fabricated with hybrids of thermoplastic polyurethane (TPU) electrospun membrane, polyethylene oxide (PEO), SiO2 nanoparticles and lithium bis(trifluoromethane)sulfonamide (LiTFSI). The structure and properties of the CPEs were confirmed by SEM, XRD, DSC, TGA, electrochemical impedance spectroscopy and linear sweep voltammetry. The TPU electrospun membrane as the skeleton can improve the mechanical properties of the CPEs. In addition, SiO2 particles can suppress the crystallization of PEO. The results show that the TPU‐electrospun‐membrane‐supported PEO electrolyte with 5 wt% SiO2 and 20 wt% LiTFSI (TPU/PEO‐5%SiO2‐20%Li) presents an ionic conductivity of 6.1 × 10?4 S cm?1 at 60 °C with a high tensile strength of 25.6 MPa. The battery using TPU/PEO‐5%SiO2‐20%Li as solid electrolyte and LiFePO4 as cathode shows an attractive discharge capacity of 152, 150, 121, 75, 55 and 26 mA h g?1 at C‐rates of 0.2C, 0.5C, 1C, 2C, 3C and 5C, respectively. The discharge capacity of the cell remains 110 mA h g?1 after 100 cycles at 1C at 60 °C (with a capacity retention of 91%). All the results indicate that this CPE can be applied to all‐solid‐state rechargeable lithium batteries. © 2018 Society of Chemical Industry 相似文献
5.
The composite microspheres of poly(lacrylamide) microgels (PAM) surfacely covered with [2‐(methacryloyloxy)ethyl]dodecyldimethylammonium (MEDDAB)‐tungstophosphate (HPW) complexes (MEDDAB‐HPW) were synthesized by using ion‐exchange reaction between MEDDAB located within the porous PAM microgels and HPW in aqueous solution. The morphology and component of the composite microspheres were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The results indicated that PAM/MEDDAB‐HPW composite microsphere with different hierarchical surface structures could be obtained by controlling the weight ratio of MEDDAB to HPW in the microgels and cross‐linking degree of PAM microgels. Although the surface morphologies of the composite microspheres prepared in different conditions were different, a general feature was that the composite microspheres have the core‐shell structure and the wrinkly surface covered with the particles of MEDDAB‐HPW complexes. The formation of the wrinkly surface is attributed to the difference in shrinkage between inside and outside of PAM microgel frameworks due to deposition of MEDDAB‐HPW on the surface, and the formation of MEDDAB‐HPW small particles originates from the reaction between MEDDAB aggregation and HPW. For this composite microsphere, PAM hydrogel core is suitable to store water‐soluble substances, and the shell composed of the surfactant/Keggin‐type polyoxometalate complexes is not only amphiphilic but also catalytic. Additionally, PAM/MEDDAB‐HPW composite microspheres with big size and MEDDAB‐HPW particles with small size make the composite microspheres not only easy for separation but also beneficial for catalysis. This material provides an example to construct microreactors with new structure used in diphase catalytic reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
6.
Improved performance of solid polymer electrolytes for structural batteries utilizing plasticizing co‐solvents 下载免费PDF全文
This study describes the formulation, curing, and characterization of solid polymer electrolytes (SPE) based on plasticized poly(ethylene glycol)‐methacrylate, intended for use in structural batteries that utilizes carbon fibers as electrodes. The effect of crosslink density, salt concentration, and amount of plasticizer has been investigated. Adding a plasticizing solvent increases the overall performance of the SPE. Increased ionic conductivity and mechanical performance can be attained compared to similar systems without plasticizer. At ambient temperature, ionic conductivity (σ) of 3.3 × 10?5 S cm?1, with a corresponding storage modulus (E ′) of 20 MPa are reached. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44917. 相似文献
7.
Polymer electrolyte based lithium ion batteries represent a revolution in the battery community due to their intrinsic enhanced safety, and as a result polymer electrolytes have been proposed as a replacement for conventional liquid electrolytes. Herein, the preparation of a family of crosslinked network polymers as electrolytes via the ‘click‐chemistry’ technique involving thiol‐ene or thiol‐epoxy is reported. These network polymer electrolytes comprise bifunctional poly(ethylene glycol) as the lithium ion solvating polymer, pentaerythritol tetrakis (3‐mercaptopropionate) as the crosslinker and lithium bis(trifluoromethane)sulfonimide as the lithium salt. The crosslinked network polymer electrolytes obtained show low Tg, high ionic conductivity and a good lithium ion transference number (ca 0.56). In addition, the membrane demonstrated sterling mechanical robustness and high thermal stability. The advantages of the network polymer electrolytes in this study are their harmonious characteristics as solid electrolytes and the potential adaptability to improve performance by combining with inorganic fillers, ionic liquids or other materials. In addition, the simple formation of the network structures without high temperatures or light irradiation has enabled the practical large‐area fabrication and in situ fabrication on cathode electrodes. As a preliminary study, the prepared crosslinked network polymer materials were used as solid electrolytes in the elaboration of all‐solid‐state lithium metal battery prototypes with moderate charge–discharge profiles at different current densities leaving a good platform for further improvement. © 2018 Society of Chemical Industry 相似文献
8.
Cross‐linked poly(ethylene glycol)/poly[(vinylidene fluoride)‐co‐hexafluoropropylene] (XPEG/PVDF–HFP) gel‐type polymer electrolyte interpenetrating polymer networks (IPNs) were prepared by cross‐linking the PEG molecules in the presence of PVDF–HFP molecules. Thermal, mechanical, swelling and electrochemical properties, as well as microstructures of the prepared polymer electrolytes, were investigated for various polymer compositions. The mechanical strength increased, but the swelling ratio in electrolyte solution decreased with increasing PVDF–HFP content. The ion conductivity was highly affected by the type of electrolyte salt, and increased with increasing XPEG concentration. The Arrhenius‐type relationship was observed in the temperature dependence of ion conductivity. The polymer electrolyte systems prepared in this study were electrochemically stable up to about 5 V. Copyright © 2005 Society of Chemical Industry 相似文献
9.
M Abdul Kader Soo Kyoung Kwak Seong Lak Kang Jou‐Hyeon Ahn Changwoon Nah 《Polymer International》2008,57(11):1199-1205
BACKGROUND: Much interest has recently been shown in improving the performance of lithium‐ion polymer batteries with gel polymer electrolytes (GPEs) due to a rapid expansion in industrial demand. Novel GPEs based on poly(vinylidene fluoride)‐graft‐poly(tert‐butyl acrylate) (PVDF‐g‐tBA) microporous mats are suggested in this study. RESULTS: Microfibrous polymer electrolytes were prepared using electrospinning and characterized for extent of grafting, morphology, crystallinity, electrochemical stability, ionic conductivity, interfacial resistance and cell cycleability. The degree of crystallinity was lower for tBA‐grafted PVDF mats than that of neat PVDF. The PVDF‐g‐tBA showed an improvement in the ionic conductivity, electrochemical stability, interfacial resistance and cyclic performance. CONCLUSION: The tBA‐grafted PVDF microporous electrolytes are promising candidates for enhancing the performance of lithium‐ion polymer batteries. Copyright © 2008 Society of Chemical Industry 相似文献
10.
Solid-state polymer electrolytes (SPEs) have attracted significant attention owing to their improvement in high energy density and high safety performance. However, the low lithium-ion conductivity of SPEs at room temperature restricts their further application in lithium-ion batteries (LIBs). Herein, we propose a novel poly (ethylene oxide) (PEO)-based nanocomposite polymer electrolytes by blending boron-containing nanoparticles (BNs) in the PEO matrix (abbreviated as: PEO/BNs NPEs). The boron atom of BNs is sp2-hybridized and contains an empty p-orbital that can interact with the anion of lithium salt, promoting the dissociation of the lithium salts. In addition, the introduction of the BNs could reduce the crystallinity of PEO. And thus, the ionic conductivity of PEO/BNs NPEs could reach as high as 1.19 × 10−3 S cm−1 at 60°C. Compared to the pure PEO solid polymer electrolyte (PEO SPEs), the PEO/BNs NPEs showed a wider electrochemical window (5.5 V) and larger lithium-ion migration number (0.43). In addition, the cells assembled with PEO/BNs NPEs exhibited good cycle performance with an initial discharge capacity of 142.5 mA h g−1 and capacity retention of 87.7% after 200 cycles at 2 C (60°C). 相似文献
11.
A poly(ethylene terephthalate) nonwoven sandwiched electrospun polysulfonamide fibrous separator for rechargeable lithium ion batteries 下载免费PDF全文
A poly(ethylene terephthalate) nonwoven sandwiched electrospun polysulfonamide (PSA) fibrous separator was developed for application in lithium‐ion batteries (LIBs). The poly(ethylene terephthalate) nonwoven served as a mechanical support and the PSA layers provided the separators with nanoporous structures. This novel composite separator possessed better thermal stability and electrolyte wettability than commercial polypropylene separator and the sandwiched nonwoven endowed the separator with an improved mechanical strength (17.7 MPa) compared to the pure electrospun PSA separator. The cells assembled with this composite separator displayed excellent discharge capacity (122.0 mAh g?1 after 100 cycles) and discharge C‐rate capacity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44907. 相似文献
12.
Ultrathin N‐doped carbon‐coated TiO2 coaxial nanofibers as anodes for lithium ion batteries 下载免费PDF全文
Bingqing Xu Yidong Luo Ting Liu Qinghua Zhang Yuan‐Hua Lin Ce‐Wen Nan Yang Shen Rujun Chen Hong Xu Jingwei Li 《Journal of the American Ceramic Society》2017,100(7):2939-2947
The structural optimization of TiO2 materials has a significance for improving the electrochemical performance since TiO2 suffers from poor electronic conductivity. For this purpose, ultrathin N‐doped carbon‐coated TiO2 coaxial nanofibers have been designed and synthesized by a facile electrospinning approach. Microstructure analysis indicates that the TiO2 nanofibers can be coated by the ultrathin carbon layers. Electrochemical tests reveal that the rate performance and cycling ability of TiO2@C nanofibers have been enhanced obviously. The TiO2@C6 nanofibers carbonized at 600°C exhibit superior features with a specific discharge capacity of 284 mAh g?1 at a current density of 100 mA g?1 after 100 cycles. Besides improved rate performance of 117 mAh g?1 at a high current density of 2000 mA g?1 and excellent cycling stability with only about 0.008% capacity loss per cycle were also obtained in the sample TiO2@C6 after 500 cycles at the current density of 1000 mA g?1. Such remarkable performance may be ascribed to the unique one‐dimensional nanofibers as flexible carbon matrix. 相似文献
13.
A new poly(propylene carbonate)/poly(ethylene oxide) (PEO/PPC) polymer electrolytes (PEs) have been developed by solution‐casting technique using biodegradable PPC and PEO. The morphology, structure, and thermal properties of the PEO/PPC polymer electrolytes were investigated by scanning electron microscopy, X‐ray diffraction, and differential scanning calorimetry methods. The ionic conductivity and the electrochemical stability window of the PEO/PPC polymer electrolytes were also measured. The results showed that the Tg and the crystallinity of PEO decrease, and consequently, the ionic conductivity increases because of the addition of amorphous PPC. The PEO/50%PPC/10%LiClO4 polymer electrolyte possesses good properties such as 6.83 × 10?5 S cm?1 of ionic conductivity at room temperature and 4.5 V of the electrochemical stability window. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
14.
In this investigation, a series of gel polyacrylonitrile (PAN)/α‐Al2O3 nanocomposite electrolyte materials that incorporate various fractions of PAN, α‐Al2O3 inorganic powders, propylene carbonate and ethylene carbonate as cosolvents, and LiClO4 were prepared. X‐ray diffraction revealed that the gel nanocomposite electrolyte materials contained amorphous PAN in which was uniformly dispersed α‐Al2O3. The gel PAN/α‐Al2O3 nanocomposite electrolytes had lower glass‐transition temperatures (as determined by dynamic mechanical analysis) and higher conductivity than a similar electrolyte prepared in the absence of α‐Al2O3. The conductivity of the PAN/α‐Al2O3 nanocomposite films was inversely proportional to the size of the α‐Al2O3 particles and directly proportional to (I) the amount of α‐Al2O3 (up to 7 wt %), (II) the F value [LiClO4/CH2CH(CN) ratio], and (III) the amount of plasticizer (propylene carbonate/ethylene carbonate = 1 : 1). Cyclic voltammetry revealed that adding α‐Al2O3 significantly increased the electrochemical stability of the composite electrolyte system. A rechargeable lithium battery prepared using this gel nanocomposite electrolyte system exhibited good cyclability and a stable capacity. The coulombic efficiency for the recharge/discharge process was approximately 75%, even after 100 cycles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
15.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (P(VDF‐HFP)) based composite polymer electrolyte (CPE) membranes were successfully prepared by electrospinning followed by electrophoretic deposition processes, and desirable polymer electrolytes were obtained after being activated in liquid electrolytes. The physicochemical properties of the CPEs with different electrophoretically deposited nano‐SiO2 contents were investigated by SEM, XRD, TGA, linear sweep voltammetry and electrochemical impedance spectroscopy measurements. When the ratio of electrophoretically deposited nano‐SiO2 to P(VDF‐HFP) is up to 4 wt%, the results show that the CPE membrane presents a very uniform surface with abundant interconnected micropores and possesses excellent mechanical tensile strength with high thermal and electrochemical stability; the ionic conductivity at room temperature can reach 3.361 mS cm?1 and the reciprocal temperature dependence of the ionic conductivity follows a Vogel ? Tamman ? Fulcher relationship. The interfacial resistance of the assembled Li/CPE/Li simulated cell can rapidly increase to a steady value of about 950 Ω from the initial value of about 700 Ω at 30 °C during 15 days' storage. The battery performance test suggests that the CPE also shows excellent compatible properties with commercial LiCoO2 and graphite materials. © 2015 Society of Chemical Industry 相似文献
16.
Mingtao Li Li Yang Shaohua Fang Siming Dong Shin‐ichi Hirano Kazuhiro Tachibana 《Polymer International》2012,61(2):259-264
Polymerized ionic liquids (PILs) having guanidinium cations with different counter‐anions, such as PF6? and N(CF3SO2)2? (TFSI?), were synthesized by copolymerization of a guanidinium ionic liquid monomer with methyl acrylate followed by an anion exchange reaction. Furthermore, incorporating a guanidinium ionic liquid, LiTFSI salt and nano‐size SiO2, a quaternary gel polymer electrolyte based on one of the PILs as the polymer host was prepared. The quaternary gel polymer electrolyte was chemically stable even at a higher temperature of 80 °C in contact with the lithium anode. In particular, the electrolyte exhibited high lithium ion conductivity, wide electrochemical stability window and good lithium stripping/plating performance. Li/LiFePO4 batteries with the quaternary gel polymer electrolyte at 80 °C had capacities of 140 and 130 mA h g?1 respectively at 0.1 and 0.2 C current rates. Copyright © 2011 Society of Chemical Industry 相似文献
17.
Alexandre Chagnes Beata Pospiech 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2013,88(7):1191-1199
Lithium‐ion battery is a mature technology that is used in various electronic devices. Nowadays, this technology is a good candidate as energy storage for electric vehicles. Therefore, much research is focused on the development of high‐density power lithium‐ion batteries. Government regulations force manufacturers to recycle the batteries for safety and health reasons but recycling could also be interesting from an economic viewpoint since cathodes in lithium‐ion batteries contain valuable metals. The electrodes in lithium‐ion batteries will evolve to provide more energy and the recycling processes will have to fit with this evolution. Leaching, bioleaching and solvent extraction are at the centre of these processes. In this paper, recent leaching and solvent extraction strategies for recovering valuable metals from spent lithium‐ion batteries are reviewed and the evolution of these processes is discussed. © 2013 Society of Chemical Industry 相似文献
18.
The mechanical integrity of battery separators is critical for battery safety and durability. A comprehensive study of strain‐rate‐dependent tensile and puncture properties of a polypropylene lithium‐ion battery separator is presented here with a new model. Due to anisotropy of the polymeric membrane, tensile testing was conducted for different directions. Results showed that tensile strength and elastic modulus were increased 1000% and 500%, respectively, for different directions. It was also demonstrated that tensile strength changed 10 to 25% with strain rate (1.67 × 10?4 to 1.67 × 10?1 s?1) for different directions. An equation was obtained for the first time for flow stress versus strain rate at varied tensile directions with respect to machine direction. Moreover, puncture testing was performed and it was shown that puncture strength was increased 140% with increasing strain rate from 0.25 to 250 mm min?1. Two failure modes were also observed in puncture samples. Finally, Eyring's model was used to calculate activation enthalpy of the porous polypropylene separator. © 2020 Society of Chemical Industry 相似文献
19.
Nitrogen‐containing polymeric carbon as anode materials for the lithium ion secondary battery is prepared from polyacrylonitrile (PAN) and melamine–formaldehyde resin (MF) at 600 and 800°C. Its physicochemical properties were investigated through elemental analysis, X‐ray powder diffraction, X‐ray photoelectron spectroscopy, and measurement of specific surface area. Results show that this kind of carbon is amorphous. Nitrogen atoms exist in the prepared polymeric carbon mainly as two states, that is, graphene nitrogen and conjugated nitrogen, and favor the enhancement of reversible lithium capacity. All the prepared polymeric carbon has a reversible capacity higher than that of the theoretic value of graphite, 372 mAh/g, and the highest reversible capacity can be up to 536 mAh/g. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1735–1741, 2000 相似文献
20.
The poly(propylene carbonate maleate) (PPCMA) was synthesized by the terpolymerization of carbon dioxide, propylene oxide, and maleic anhydride. The PPCMA polymer can be readily crosslinked using dicumyl peroxide (DCP) as crosslinking agent and then actived by absorbing liquid electrolyte to fabricate a novel PPCMA gel polymer electrolyte for lithium‐ion battery. The thermal performance, electrolyte uptake, swelling ratio, ionic conductivity, and lithium ion transference number of the crosslinked PPCMA were then investigated. The results show that the Tg and the thermal stability increase, but the absorbing and swelling rates decrease with increasing DCP amount. The ionic conductivity of the PPCMA gel polymer electrolyte firstly increases and then decreases with increasing DCP ratio. The ionic conductivity of the PPCMA gel polymer electrolyte with 1.2 wt % of DCP reaches the maximum value of 8.43 × 10−3 S cm−1 at room temperature and 1.42 × 10−2 S cm−1 at 50°C. The lithium ion transference number of PPCMA gel polymer electrolyte is 0.42. The charge/discharge tests of the Li/PPCMA GPE/LiNi1/3Co1/3Mn1/3O2 cell were evaluated at a current rate of 0.1C and in voltage range of 2.8–4.2 V at room temperature. The results show that the initial discharge capacity of Li/PPCMA GPE/LiNi1/3Co1/3Mn1/3 O2 cell is 115.3 mAh g−1. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献