首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a high data rate bidirectional relay network is proposed by combining the merits of spatial modulation (SM) and physical layer network coding. All nodes in the network are equipped with multiple antennas. Spatial modulation technique is used to reduce hardware complexity and interchannel interference by activating only one antenna at any time during transmission. In the proposed bidirectional relay network, transmit antennas are selected at the source nodes and relay node on the basis of the order statistics of channel power. It increases received signal power and provides a significant improvement in the outage performance. Also, the data rate of the proposed network is improved by physical layer network coding at the relay node. A closed form analytical expression for the outage probability of the network over Nakagami‐m fading channel is derived and validated by Monte Carlo simulations. In addition, asymptotic analysis is investigated at high signal‐to‐noise ratio region.The outage performance of the proposed network is compared with SM and physical layer network coding bidirectional relay network without transmit antenna selection and point‐to‐point SM. With approximate SNR≈1 dB difference between the two networks, the same data rate is achieved.  相似文献   

2.
This paper presents an energy‐efficient relaying scheme for G.hn standard. We propose a multi‐domain bidirectional communication network with network coding at the physical layer in order to increase network coverage. The logical link control stack was also modified and supplemented with additional functionality. This reduces the power consumption in the network and enhances the performance while reducing collisions for inter‐domain network access. We consider domain selection to minimize the total energy consumption of the network and present optimal power allocation for the given QoS of each end node. Energy efficiency is evaluated in terms of transmit energy per bit for relay networks with bidirectional symmetric and asymmetric traffic flows. Simulation results show that the proposed multi‐domain bidirectional communication provides improved performance and higher energy savings than the single‐domain unidirectional network, especially in powerline communication channel, which is the worst medium of the three G.hn media. Finally, it was demonstrated that improved energy efficiency can be achieved with appropriate domain selection. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
针对无线功率传输技术的能量收集效率有限造成信噪比下降进而引发通信中断率增加的问题,在能量收集多跳D2D(Device to Device)无线传感网络中,提出一种基于改进K-means聚类的中继选择方法。首先,推导得到能量收集下的信噪比因子,使其作为K-means聚类特征。然后,利用最小欧氏距离原则得到距离聚类中心最近的实际节点的位置。最后,根据距离重排序得到中继节点,形成从源节点到目的节点的通信链路。仿真实验结果表明,相比最短路径算法和随机中继协作方案,所提出的改进算法链路信噪比更大,能够减小通信中断率,具有更好的中继性能。  相似文献   

4.
This paper considers a cognitive radio–assisted wireless information and power transfer system consisting of multipair of transceiver in primary network and 2‐hop relaying link in secondary network. In this investigation, a decoded‐and‐forward–assisted relay node and power splitting protocol are deployed to obtain ability of wireless energy transfer. The relay node harvests energy from the radio frequency signals of the secondary transmitter and primary transmitters in data transmission to the destination by reusing the licensed spectrum resource. We propose 2 policies for wireless power transfer at the relay, namely, (1) multisource power transfer and (2) single‐source power transfer. To evaluate performance under energy harvesting regime, we derive the closed‐form outage probability expressions and achievable throughput of the secondary network in delay‐limited transmission mode. In addition, we investigate the impact of various system parameters including number of primary transceivers, primary outage threshold, and position arrangement of nodes in primary transceivers on the outage performance of the proposed scheme. Furthermore, we evaluate the system energy efficiency to show trade‐off metric of energy consumption and throughput. Performance results are presented to validate our theoretical derivation and illustrate the impacts of various system parameters. An important result is that the secondary network is more beneficial than harmful from the primary interference under power constraint and reasonable node location arrangement.  相似文献   

5.
本文针对两跳无线物联通信系统,对中继节点利用收集的能量采用功率分流法进行能量收集和信息传输算法进行了设计,其中算法设计是基于能效最大化的优化准则,能效函数定义为瞬时吞吐量与硬件电路总功耗的比值,中继节点利用源节点发送的信号进行能量收集,考虑EARTH计划中实际的功率转换效率和硬件电路损耗的功耗因子,推导了中继协同的无线物联系统能量收集和信息传输的最优功率分配方案的解析解,由于优化问题是非凸问题,为了解决该问题,本文利用高信噪比近似法并通过拉格朗日算法和Lambert W函数获得了优化问题的最优解,数值仿真验证了所提方案的正确性和有效性。   相似文献   

6.
Using network coding in a wireless network can potentially improve the network throughput. On the other hand, it increases the complexity of resource allocations as the quality of one transmission is affected by the link conditions of the transmitter to multiple receivers. In this work, we study time slot scheduling and channel allocations jointly for a network with bidirectional relaying links, where the two end nodes of each link can exchange data through a relay node. Two scenarios are considered when the relay node forwards packets to the end nodes. In the first scenario, the relay node always forwards network‐coded packets to both end nodes simultaneously; in the second scenario, the relay node opportunistically uses network coding for two‐way relaying and traditional one‐way relaying. For each scenario, an optimization problem is first formulated for maximizing the total network throughput. The optimum scheduling is not causal because it requires future information of channel conditions. We then propose heuristic scheduling schemes. The slot‐based scheduling maximizes the total transmission rate of all the nodes at each time slot, and the node‐based scheduling schedules transmissions based on achievable transmission rates of individual nodes at different channels. The node‐based one has lower complexity than the slot‐based one. Our results indicate that although the node‐based scheduling achieves slightly lower throughput than the slot‐based one, both the proposed scheduling schemes are very effective in the sense that the difference between their throughput and the optimum scheduling is relatively small in different network settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this work we consider the achievable rates of a joint resource allocation for a three-node network where a halfduplex relay node enables bidirectional communication between nodes 1 and 2 and thereby adds an own multicast message to the communication. In the multiple access phase nodes 1 and 2 transmit their message to the relay node, which decodes the messages and forwards them in the succeeding broadcast phase. Therefore, the relay node encodes the multicast and bidirectional messages using the superposition encoding strategy. We do not allow cooperation between the encoders of nodes 1 and 2, but since both nodes know a priori its own bidirectional message, both nodes can cancel the interference caused by their own message before decoding the unknown messages. It shows that for both nodes it is always optimal to decode the relay message first. Furthermore, the total sum-rate maximum is determined by the sum-rate optimum of the bidirectional broadcast phase. From the closed form solutions of the combinatorial problems we can characterize the bidirectional rate pairs where the total sum-rate remains constant. In the end the obtained results are discussed and illustrated by means of some working examples. The joint resource allocation improves the overall spectral efficiency and enables new trade-offs between the routing tasks.  相似文献   

8.
Cooperative communication plays an important role in wireless networks by improving network connectivity, spectrum efficiency, power, and communication reliability. Moreover, cooperative communication also facilitates the development of a well-organized approach in order to improve the quality of wireless terminals. Besides, it enables the utilisation of communication resources by allowing the nodes and pathways in a network to cooperate with one another via data transmissions. To control a wireless network, cooperative communication must manage its power to improve a network’s energy efficiency, capacity and reliability. When information is transmitted at a higher power, this decreases the lifespans of both the nodes and the network itself. Thus, controlling over the transmission of power is essential to obtain a sufficient level of bit-error-rate (BER) performance at the receiver. Relay nodes can improve system performance by reducing power consumption. Moreover, the decode-and-forward method is one of the best cooperative relay protocols that can be used to achieve better system performance in power constraints and BERs. In the present paper, system model containing source, destination and relay node is analysed. One cooperative scheme which including decode and forward is employed and investigated. At the experimental and simulation levels, the present paper showed that the power in the transmitters was observed and calculated in order to show the savings which are resulting from the use of relay nodes.  相似文献   

9.
In order to reduce energy consumption and improve spectral efficiency of the cognitive relay wireless communication system in 5G network,an optimal cooperative transmission strategy of information and energy was designed for cognitive relay radio with wireless energy harvesting.For the proposed optimal cooperative strategy,the maximal throughput formula and outage probability of secondary user were deduced.In order to resolve the derived maximum throughput equation,a quantum bat algorithm which was based on the optimization mechanism of quantum computing and bat algorithm was designed to solve the deduced equation,and the optimal cooperative transmission scheme for information and energy could be obtained.Simulation results show that the proposed optimal cooperative strategy not only can meet the information transfer demand of primary user,but also can realize the energy self-supply of the secondary user system and improve the communication quality of the secondary user.The proposed optimal cooperative strategy has a better performance than the cooperative strategy of existing cognitive relay radio for different simulation scenarios.  相似文献   

10.
Wang  Xinjie  Li  Enyu  Yang  Guang  Wu  Zeju  Fan  Lisheng 《Wireless Personal Communications》2020,111(2):867-881
Wireless Personal Communications - In this paper, we investigate the wireless powered multi-user multi-relay communication network, in which only relay nodes need energy harvesting with power...  相似文献   

11.
The simultaneous wireless information and power transfer in an energy harvesting system is investigated, where a relay is self-sustained by harvesting radio-frequency (RF) energy from the transmitter and multiple user devices are distributed according to a homogeneous Poisson point process. A joint time switching and power splitting protocol for relay-assisted transmission is proposed, in which each time slot is split into two stages. In the first stage, the relay utilizes a portion of received RF signal power for energy harvesting and the remaining power for information processing. In the second stage, information is delivered from the relay to its closest destination node with the harvested energy. The outage probability, network throughput and energy efficiency are derived and analyzed in closed form. On this basis, the optimal power splitting and time switching ratio which maximizes network throughput is obtained. Simulation results are also provided to validate our theoretical analysis.  相似文献   

12.
In this paper, we discuss an interference aware multichannel MAC (IAMMAC) protocol assign channels for communication in wireless sensor‐actor networks. An actor acts as a cluster head for k‐hop sensors and computes the shortest path for all the sensors. Then, the actor partitions the cluster into multiple subtrees and assigns a noninterference channel to each subtree. The actor 1‐hop sensors are represented as relay nodes. The actor selects a relay node as a backup cluster head (BCH) based on the residual energy and node degree. After selecting a BCH from the relay nodes, the actor broadcast this information to the remaining relay nodes using the common control channel. The relay sensors use the same channel of BCH to communicate with it. However, the other cluster members do not change their data channel. Further, interference‐aware and throughput‐aware multichannel MAC protocol is also proposed for actor–actor coordination. The performance of the proposed IAMMAC protocol is analyzed using standard network parameters such as packet delivery ratio, goodput, end‐to‐end delay, and energy dissipation in the network. The obtained simulation results indicate that the IAMMAC protocol has superior performance as compared with the existing MAC protocols. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Green communication has emerged as the most important concept for the next generation networks. Along with improved data rate and capacity, the upcoming 5G networks aim at improving energy efficiency without compromising on the user experience. In this paper, we have used amplify and forward relays in the heterogeneous network topology consisting of low power and high power nodes. A three layered system model for power optimization is discussed using a relay selection strategy for power optimization with the aim to improve energy efficiency of the network. Further, we have used Hidden Markov Model for training and maintaining of base station, relay and SCA with the aim of probabilistic power allocation to client nodes in order to solve the power optimization problem. We have also used adaptive modulation schemes for lowering the power consumption of the network to meet our goal of green communication for the next generation network.  相似文献   

14.
Wireless networks are now very essential part for modern ubiquitous communication systems. The design of efficient routing and scheduling techniques for such networks have gained importance to ensure reliable communication. Most of the currently proposed geographic routing protocols are designed for 2D spatial distribution of user nodes, although in many practical scenarios user nodes may be deployed in 3D space also. In this paper, we propose 3D routing protocols for multihop wireless networks that may be implemented in two different ways depending on how the routing paths are computed. When the routing paths to different user nodes from the base station in the wireless network are computed by the base station, we call it centralized protocol (3DMA‐CS). A distributed routing (3DMA‐DS) protocol is implemented when respective routing path of each user node to the base station is computed by the user node. In both of these protocols, the user (base station) selects the relay node to forward packets in the direction of destination, from the set of its neighbours, which makes minimum angle with the reference line drawn from user (base station) to the base station (user), within its transmission range. The proposed protocols are free from looping problem and can solve the void node problem (VNP) of multihop wireless networks. Performance analysis of the proposed protocol is shown by calculating end‐to‐end throughput, average path length, end‐to‐end delay, and energy consumption of each routing path through extensive simulation under different network densities and transmission ranges.  相似文献   

15.
For rechargeable wireless sensor nodes, effective power management is of prime importance because of the stochastic behaviour of the environmental resources. A key issue in integrating solar resources with wireless sensor networks (WSNs) is the need of precise irradiance measurements and power to resource modelling. WSNs are employed in an adhoc manner comprises of numerous sensing nodes and organised as a network for the sake of checking and balancing the environmental factors. Each node has sensing, computation, communication, and locomotion capabilities but operates with limited battery life. Energy harvesting is a way of powering these WSNs by harvesting energy from the environment. By considering harvested energy as an energy source, certain considerations are different from that of battery‐operated networks. Nondeterministic energy availability with respect to time is the reason behind these differences, which put a limit on the maximum rate at which energy can be used. Thus, reliable knowledge of solar radiation is essential for informed design, deployment planning, and optimal management of energy in rechargeable WSNs. Further, power management is essential in self‐powerssed networks to efficiently utilize the available energy. In this paper, a detailed survey on different solar forecasting techniques has been presented for precise energy estimates. A detailed study on energy efficient power management techniques is also proposed to address the feasibility of energy‐harvesting approach in WSNs.  相似文献   

16.
In this paper, optimal power allocation and relay selection strategies in energy harvesting cooperative wireless networks are studied. In particular, signal‐to‐noise ratio (SNR)‐maximizing based power allocation and relay selection without and with energy cooperation—via wireless energy transfer—are considered. Moreover, total relay power minimization subject to target end‐to‐end SNR is investigated. The different optimal strategies are formulated as optimization problems, which are non‐convex. Thus, intelligent transformations are applied to transform non‐convex problems into convex ones, and polynomial‐time solution procedures are proposed. Simulation results illustrate that power allocation strategies achieve higher end‐to‐end SNR than relay selection ones. Finally, energy cooperation is shown to be effective in improving end‐to‐end SNR, while total relay power minimization balances end‐to‐end SNR, transmit power consumption, and harvested energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
曹晓红  党小娟  陈江萍  潘虹  叶迎晖 《电讯技术》2023,63(10):1582-1588
针对无线供能反向散射通信网络,提出了一种满足传感设备通信需求及能量因果的专用能量站能耗最小化资源分配方法。在考虑非线性能量收集模型及不完美串行干扰消除基础上,通过联合优化专用能量站发射功率、传感设备反向散射通信时间、反向散射系数及其能量收集时间,构建了一个专用能量站能耗最小化的非凸多维资源分配问题。首先,构建辅助变量对反向散射系数与时间进行解耦,再利用目标函数是关于专用能量站发射功率的单调递减函数这一特性来设计一种基于二分法的迭代算法来获取原问题的最优解。仿真验证了所提算法的快速收敛性,同时,与同类算法相比,所提方法可为专用能量站节约更多的能量。  相似文献   

18.
王江洪  谢红 《电讯技术》2011,51(12):14-19
在无线通信研究中,网络编码因其可有效提升带宽利用率的特性得到了大量关注.但是,网络编码用于双向中继信道(TWRC)时,中继位置的不对称将造成系统性能的下降,故在源节点使用分层调制的方法来解决此问题.研究了分层调制和物理层网络编码的联合以及优化,并进行了系统仿真.仿真结果显示,在非对称中继信道下,通过与传统调制方案(CM...  相似文献   

19.
To accomplish the primary objective of data sensing and collection of wireless sensor networks (WSN), the design of an energy efficient routing algorithm is very important. However, the energy constrained sensing nodes along with the intrinsic properties of the (WSN) environment makes the routing a challenging task. To overcome this routing dilemma, an improved distributed, multi‐hop, adaptive, tree‐based energy‐balanced (DMATEB) routing scheme is proposed in this paper. In this scheme, a relay node is selected in view of minimum distance and high energy from a current sensing node. Further, the parent node is chosen among the selected relay nodes on the basis of high residual energy and less power consumption with due consideration of its associated child nodes. As each sensing node itself selects its parent among the available alternatives, the proposed scheme offers a distributive and adaptive approach. Moreover, the proposed system does not overload any selected parent of a particular branch as it starts acting as a child whenever its energy lowers among the other available relay nodes. This leads to uniform energy utilization of nodes that offers a better energy balance mechanism and improves the network lifespan by 20% to 30% as compared with its predecessors.  相似文献   

20.
In many wireless sensor network applications, it should be considered that how to trade off the inherent conflict between energy efficient communication and desired quality of service such as real-time and reliability of transportation. In this paper, a novel routing protocols named balance energy-efficient and real-time with reliable communication (BERR) for wireless sensor networks (WSNs) are proposed, which considers the joint performances of real-time, energy efficiency and reliability. In BERR, a node, which is preparing to transmit data packets to sink node, estimates the energy cost, hop count value to sink node and reliability using local information gained from neighbor nodes. BERR considers not only each sender’ energy level but also that of its neighbor nodes, so that the better energy conditions a node has, the more probability it will be to be chosen as the next relay node. To enhance real-time delivery, it will choose the node with smaller hop count value to sink node as the possible relay candidate. To improve reliability, it adopts retransmission mechanism. Simulation results show that BERR has better performances in term of energy consumption, network lifetime, reliability and small transmitting delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号