首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
目的 制备一种非活性油溶性有机钼添加剂(SPFMo)以为满足汽油发动机润滑油低黏度化发展的需求。方法 将SPFMo添加到0W–20润滑油中,利用SRV摩擦磨损试验机详细分析了在不同温度、载荷条件下,自研减摩剂SPFMo、商用减摩剂Molyvan855和商用抗磨剂MOM201在0W–20中摩擦学性能的影响,并采用3D激光共聚焦显微镜和扫描电子显微镜对摩擦副表面进行分析。结果 SPFMo具有良好的减摩抗磨性能,并有效降低润滑油0W–20的摩擦因数及磨损率。摩擦过程中钼元素会发生富集,并发生摩擦化学反应生成包含硫–钼–氧的复合减摩片层,实现减摩抗磨功能。SPFMo添加到0W–20中可以发挥良好摩擦学性能的使用温度区间和载荷区间分别为80~180 ℃和150~250 N(1 559~1 848 MPa)。0W–20+1% SPFMo与润滑油0W–20相比,在130 ℃、200 N下,摩擦因数降低13.28%,磨损率降低37.91%;在130 ℃、250 N下,摩擦因数降低18.05%,磨损率降低57.68%。0W–20+1% SPFMo润滑油的摩擦因数随温度的升高先减小后增大,随载荷的增大而减小;磨损率随温度的升高先减小后增大,随载荷的增大而减小。结论 低黏度润滑油中添加SPFMo可有效增强其摩擦学性能。  相似文献   

2.
有机钼为润滑油抗磨减摩添加剂的摩擦学性能研究   总被引:4,自引:0,他引:4  
用四球摩擦磨损试验机考察了两种油溶性有机钼(二硫代磷酸氧钼、二硫代磷酸钼)抗磨减摩添加剂在液体石蜡基础油中的摩擦学性能,采用扫描电子显微镜对边界润滑状态下形成的磨斑形貌和表面膜的元素组成进行了分析。试验结果表明:两种有机钼添加剂均具有优异的抗磨减摩性能和极好的承载能力。其中二硫代磷酸钼添加剂使基础油的抗磨性能提高53 %,减摩性能提高40 %,极压承载能力提高一倍多。SEM分析显示钢球表面的磨痕和犁沟较浅,且有含硫和钼的沉积物生成。由此推断出有机钼添加剂在摩擦副表面形成吸附膜,部分吸附膜通过摩擦化学反应生成了具有抗磨减摩作用的MoS2和FeS膜,从而起到了改善摩擦磨损性能的作用。  相似文献   

3.
针对恶劣工作环境会加剧机械设备摩擦副间的磨损而降低其服役寿命的问题,对比研究3种纳米添加剂TiO2、TiN和TiC在不同工况下的摩擦学性能及其自修复性能。根据SH-T0762-2005标准润滑油摩擦因数测定法,并利用MRS-10A型四球磨损试验机磨斑测量光镜、激光共聚焦显微镜和能量色散谱仪(EDS)对磨损表面进行表征,探讨其润滑抗磨及自修复机理。结果表明:钛基纳米添加剂的加入很好地改善了润滑油的抗磨减磨性能,并使其具有一定的自修复性能;当钛基纳米质量分数为0.5%时,其减摩抗磨性能达到最佳。3种纳米添加剂中,对润滑油减摩抗磨性能改善效果最好的是纳米TiO2,而自修复效果最好的则为纳米TiN。故纳米TiN和纳米TiO2作为润滑油添加剂,具有较好的减摩抗磨和自修复能力。  相似文献   

4.
纳米铜颗粒作为50CC润滑油添加剂的摩擦学性能研究   总被引:8,自引:0,他引:8  
在球盘式与环块式摩擦磨损试验机上考察了有机物修饰的纳米铜颗粒作为50CC润滑油添加剂的摩擦磨损性能,采用SEM和EDS分析了磨损表面形貌和表面膜元素组成及含量。结果表明:采用有机物修饰的纳米铜颗粒作为添加剂在润滑油中存在一个最佳的添加量,在此浓度下的润滑油在不同载荷条件下都具有良好的抗磨减摩性能,纳米铜粒子的加入还在一定程度上提高了油品的承载能力,降低了摩擦热。综合分析认为,纳米铜颗粒的摩擦学作用机制是在摩擦接触区高温高压的作用下形成低剪切强度的铜保护膜。  相似文献   

5.
目的研究白云母/CeO2复合粉体在500SN基础油中的抗磨减摩性能和抗磨减摩机理。方法以白云母、硝酸铈、草酸为原料,通过球磨固相法制备不同配比的白云母/CeO2复合粉体,用油酸改性,采用XRD,SEM等对粉体的结构特征和表面形貌进行表征,并通过四球磨损实验考察不同油样的摩擦学性能。结果添加了白云母/CeO2和单一白云母的润滑油,摩擦学性能均比无添加的基础油优越。其中,添加了白云母/10%CeO2复合粉体的润滑油抗磨减摩性能最好,摩擦系数比基础油降低了10.7%,磨斑直径比基础油减少了24.4%。结论白云母/CeO2复合粉体有较好的抗磨减摩能力,对磨损表面有修复作用,合理配比的白云母/CeO2能有效提高基础油的抗磨减摩性能。  相似文献   

6.
目的探究片状纳米MoS_2的制备工艺及其在油润滑中的减摩抗磨性能。方法以钼酸钠和硫脲为原料,采用水热反应法在220℃条件下制备片状纳米MoS_2,利用红外(FT-IR)、X射线衍射仪(XRD)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、能量色散谱仪(EDS)表征纳米颗粒的化学成分、晶体结构等理化性质。使用硅烷偶联剂(KH570)对其进行表面包覆改性,并使用超声处理将其分散到石蜡油中,形成润滑油分散体系。采用球-盘式摩擦磨损试验机对其作为添加剂在润滑油中的减摩抗磨性能进行考查,通过SEM、EDS等结果建立理论模型,并探究其减摩抗磨机理。结果制备出粒径在30~100 nm的片状纳米级MoS_2。石蜡油中添加片状纳米MoS_2可以显著改善其摩擦学性能。当添加量为1.0%(质量分数)时,摩擦系数比用纯石蜡油低约53.4%,磨斑直径比用纯石蜡油降低约41.1%。当用纯石蜡油作为润滑剂时,对偶盘磨损表面表现出了明显的犁沟磨损,而当用纳米润滑油作为润滑剂时,对偶盘的磨痕宽度最高降低了43.9%。结论片状纳米MoS_2可随润滑油流动进入摩擦接触界面,并随着界面的相对滑动吸附在摩擦表面形成沉积膜,从而达到减摩耐磨的效果。  相似文献   

7.
孟凡善  李征  程焯  王文健  刘启跃 《表面技术》2019,48(11):259-265
目的探究TiN/BN与AlN/BN两类纳米混合添加剂在油润滑中的摩擦学性能,分析纳米润滑油润滑机理。方法以油酸作为分散剂,提高纳米添加剂在基础油中的分散性能,利用MRS-10A型四球摩擦磨损实验机对不同混合比例、不同添加浓度的TiN/BN与AlN/BN纳米润滑油进行摩擦学性能测试,使用扫描电镜观察磨斑表面形貌,用EDS和XPS检测磨斑表面元素种类及相应化合价态。结果经油酸分散的混合纳米粒子的质量比为1︰1时,纳米润滑油表现出最好的抗磨减摩性能。其中TiN/BN纳米混合添加剂的质量分数为0.6%时,磨斑直径和摩擦系数较基础油分别降低34.97%和16.75%,最大无卡咬负荷提高65.96%;AlN/BN纳米混合添加剂的质量分数为0.2%时,磨斑直径和摩擦系数较基础油分别降低24.49%和11.76%,最大无卡咬负荷提高38.30%。磨斑表面磨痕沟槽深度、宽度减小,表面粗糙度明显降低。结论分散在油液中的AlN、BN、TiN纳米粒子进入摩擦副间发挥承载支撑作用,将滑动摩擦变为滑动-滚动混合摩擦,降低摩擦磨损。进入摩擦副间的AlN纳米粒子由于高表面能特性,沉淀吸附于摩擦表面凹坑处,修复磨损表面,TiN、BN纳米粒子与摩擦表面发生化学反应,生成由Fe-O、Ti-O、BO_x及TiN_xO_y等物质所构成的自修复膜,表现出较好的抗磨减摩及自修复性能。  相似文献   

8.
通过大量缓蚀、阻垢实验,着重介绍了钼磷系缓蚀阻垢剂SK-107在高碱度水且局部漏氨的合成氨循环水系统中的缓蚀、阻垢性能。  相似文献   

9.
本文中将纳米二氧化铈与铜粒子混合物应用于润滑油添加剂,使润滑油具有优良的减摩、抗磨性能.纳米二氧化铈与铜粒子用适当的表面活性剂进行表面改性处理,经表面改性的纳米粒子在润滑油中具有良好的分散、稳定性.采用透射电镜(TEM)观察与测量纳米二氧化铈、铜粒子的形貌和平均直径.应用四球摩擦磨损试验机测定添加纳米二氧化铈、铜粒子的润滑油的极压性能(PB)、磨痕直径(WSD)和摩擦因数(μ)等.研究结果表明,最佳的纳米二氧化铈、铜粒子的总添加量为0.6%左右、纳米二氧化铈、铜粒子的质量分数之比为1∶1.该润滑油具有最佳的的减摩、抗磨作用.文中还探讨了纳米二氧化铈、铜粒子混合物具有优良摩擦学性能的机理.  相似文献   

10.
润滑油纳米TiO2添加剂的摩擦自修复及其性能研究   总被引:3,自引:1,他引:2  
将质量分数为2%的纳米TiO2作为自修复添加剂加入350SN基础油中、采用WMP-1多功能摩擦磨损试验机考察纳米TiO2在面摩擦条件下的自修复行为及摩擦条件对其修复性能影响.结果表明,修复量受载荷、转速和修复时间的影响,在适宜的摩擦条件下,试环出现磨损负增长.表面粗糙度仪、扫描电子显微镜、X-射线能谱仪分析表明纳米TiO2能够改善摩擦副的表面粗糙度,对磨痕起到整平和修复作用,从而对磨损表面起到修复作用.  相似文献   

11.
采用SRV-IV摩擦磨损试验机考察了凹凸棒石黏土作为润滑油添加剂的摩擦学性能,借助SEM及EDS分析了摩擦表面的微观形貌及元素组成。结果表明,在试验所用的载荷和频率条件下,加入凹凸棒石黏土之后润滑油的摩擦因数和磨损量均有不同程度的降低。固定频率10Hz,当载荷为50N时,平均摩擦因数降低幅度达到了43.08%,当载荷为20N时,上下试样磨损率降低幅度分别达到了59.05%和85.48%。加入凹凸棒石黏土之后磨损表面更加光滑平整,表面氧元素含量升高。这主要归因于凹凸棒石黏土的层链状晶体结构和摩擦过程中复杂的物理化学过程。  相似文献   

12.
微纳米层状硅酸盐矿物润滑材料的摩擦学性能研究   总被引:5,自引:1,他引:4  
对微纳米层状硅酸盐矿物粉的摩擦学性能进行了研究.将微纳米层状硅酸盐矿物质量比为0.5%分散在汽油机润滑油SJ10W/40中,利用摩擦磨损实验机考察其减摩抗磨及自修复性能,与润滑油SJ10W/40进行对比.采用扫描电子显微镜(SEM)分析试样磨痕表面的形貌和元素组成,并进行了EDS能谱分析.试验结果表明:与润滑油SJ10W/40相比,含层状硅酸盐矿物油样润滑的摩擦副,摩擦因数降低了71.6%.SEM分析表明磨痕处有着与基体材料不同的修复区域,该修复区域沉积着Si、Mg等元素.这些说明微纳米层状硅酸盐矿物润滑材料具有优良的减摩抗磨和自修复性能.  相似文献   

13.
目的 保证轴承体系的安全性和可靠性,研究轴承润滑脂在不同工作温度下的摩擦学性能和流变学性能。方法 用机械剥离法制备的石墨烯作为聚脲脂的润滑添加剂,通过四球摩擦试验机、旋转流变仪,研究石墨烯在不同工作温度下对聚脲润滑脂流变行为和摩擦学性能的影响,并通过三维轮廓仪、扫描电子显微镜和拉曼光谱仪对磨斑形貌和结构进行分析。结果 添加石墨烯润滑添加剂使聚脲润滑脂的高温硬化现象明显改善,同时提高了聚脲润滑脂的结构稳定性和抗剪切能力。工作温度为75、150 ℃时,与空白聚脲润滑脂相比,含1.0%(质量分数)石墨烯的聚脲润滑脂润滑下的轴承钢摩擦副的摩擦系数和磨斑直径分别降低49%、20%和10%、20%。随着工作温度的升高,含石墨烯的聚脲润滑脂样品在钢滑动表面形成的沉积膜的结构有序化碳的含量稍有下降,但与空白聚脲润滑脂相比,石墨烯-聚脲润滑脂沉积膜的结构有序化碳含量高得多。结论 结构有序化碳的形成对提高基础脂的减摩抗磨性能起至关重要的作用,石墨烯润滑添加剂还可以有效改善聚脲润滑脂的高温硬化性能、胶体稳定性以及稠化剂的结构稳定性。  相似文献   

14.
目的探索不同改性剂对纳米坡缕石的表面修饰效果,探究其在油润滑中的减摩抗磨和自修复机理。方法以油酸和钛酸酯作为改性剂对纳米坡缕石进行表面修饰,采用沉降法和透射电子显微镜(TEM)表征改性效果。将选择的改性剂和纳米坡缕石放入球磨机内在线修饰,制备成润滑油添加剂并将其超声分散于纯基础油150N中,形成润滑油分散体系。采用环-盘式摩擦磨损试验机对其摩擦性能进行考察,通过金相显微镜、扫描电子显微镜(SEM)、能量色散谱仪(EDS)进行微观结构观察与分析,并探究其润滑及自修复机理。结果采用油酸修饰的纳米坡缕石满足润滑油行业的要求,可显著改善润滑油的摩擦学性能。与纯基础油相比,当添加剂含量为3.0%时,45#钢摩擦副磨损表面形成了一层含多种元素的复合陶瓷自修复膜,平均摩擦系数降低了31.3%,磨损量减少了16.0%。结论纳米坡缕石添加剂可随油液流动智能吸附于摩擦界面,阻止摩擦副之间的直接接触,产生纳米滚珠效应。同时,随着界面滑动发生摩擦化学反应生成自修复膜,填补犁沟和划痕,在纳米滚珠和自修复膜共同作用下达到减摩抗磨的效果。  相似文献   

15.
含纳米金刚石润滑油减摩抗磨添加剂的摩擦学性能   总被引:9,自引:0,他引:9  
研制了一种含纳米金刚石润滑油节能抗磨添加剂,对其摩擦学性能及机制进行了研究。结果表明:所研制的含纳米金刚石润滑油抗磨添加剂上有优异的摩擦学性能,摩擦表面存在含金刚石的表面膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号