首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new Pluronic (F68)‐1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphoethanolamine (DPPE) (Pluronic (F68)–DPPE) copolymer was synthesized with Pluronic (F68) and DPPE. The chemical structure and physical properties of copolymers were determined by FTIR, 1H NMR, 13C NMR, 31P NMR, and TGA. Environmental scanning electron microscopy, fluorescence spectroscopy, and dynamic light scattering method confirmed the formation of copolymeric micelles of Pluronic (F68)‐DPPE. To estimate the feasibility as novel drug carriers, the copolymer micelles were prepared by the phase separation dialysis method. Amphotericin B as a lipophilic model drug was incorporated into copolymeric micelles and the drug release behavior was investigated. It was found that the chemical composition of the micelle was a key factor in controlling micelles size, drug‐loading content, and drug release behavior. As DPPE segment weight ratio increased, the micelle size and drug‐loading content increased, and the drug release rate decreased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
The new aromatic tetrafunctional methacrylate monomer, 1,4‐di(2‐hydroxy‐3‐methacryloyloxypropoxy) phenol, and its application for the synthesis of porous microspheres have been presented. It was copolymerized with trimethylolpropane trimethacrylate in the presence of pore‐forming diluents mixture (chlorobenzene and 1‐decanol). The results indicate that composition of diluents mixture influence porous structure of copolymers. The porous structure of the copolymer obtained in the presence of 50% chlorobenzene was studied in detail. The results show that pore volume and the most probable pore size diameters determined for the copolymer in the dry and in the wetted states are different. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


4.
Asymmetric, optically active sn‐1,2‐diacyl‐3‐acetyl‐glycerols (AcDAG) have been known to scientists for several decades. However, to date, the problem of their structure has not been definitely resolved, which has led to a vast diversity of terms used for their designation in the literature. Using two‐dimensional nuclear magnetic resonance, we have investigated AcDAG from the mature seeds of Euonymus maximowiczianus, from which we have been able to both identify a correlation of the methyl group in acetic acid residue with protons at the carbon atom at sn‐3 position in the glycerol residue of the AcDAG molecule and, for the first time, demonstrate that this correlation is observed exclusively with one carbon atom at the α‐position, but not with two as would have been expected in case of a racemic mixture. Moreover, results of our analysis of AcDAG isolated from the seeds of E. maximowiczianus directly confirm that diacylglycerol‐3‐acetyl‐transferase is responsible for their biosynthesis, which reveals a strict specificity not only to acetyl‐CoA as one of the substrates but also to the sn‐3‐position of the glycerol residue in sn‐1,2‐diacylglycerol during their biosynthesis.  相似文献   

5.
A novel synthesis path for the monotelechelic polydimethylsiloxane with a diol‐end group, α‐butyl‐omega‐{3‐[2‐hydroxy‐3‐(N‐methyl‐N‐hydroxyethylamino)propoxy]propyl}polydimethylsiloxane, is described in this article. The preparation included three steps, which were anionic ring‐opening polymerization, hydrosilylation, and epoxy addition. The structure and polydispersity index of the products were analyzed and confirmed by FTIR, 1H NMR, 13C NMR, H? H, and C? H. Correlated Spectroscopy and gel permeation chromatography. The results demonstrated that each step was successfully carried out and the targeted products were accessed in all cases. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Regio‐ and stereoselective reductions of α‐substituted 1,3‐diketones to the corresponding β‐keto alcohols or 1,3‐diols by using commercially available ketoreductases (KREDs) are described. A number of α‐monoalkyl‐ or dialkyl‐substituted symmetrical as well as non‐symmetrical diketones were reduced in high optical purities and chemical yields, in one or two enzymatic reduction steps. In most cases, two or even three out of the four possible diastereomers of α‐alkyl‐β‐keto alcohols were synthesized by using different enzymes, and in two examples both ketones were reduced to the 1,3‐diol. By replacing the α‐alkyl substituent with the OAc group, 1‐keto‐2,3‐diols, as well as 1,2,3‐triols were synthesized in high optical purities. These enzymatic reactions provide a simple, highly stereoselective and quantitative method for the synthesis of different diastereomers of valuable chiral synthons from non‐chiral, easily accessible 1,3‐diketones.  相似文献   

7.
BACKGROUND: Endocrine disruptors in the aquatic environment and their potential adverse effects are currently issues of concern. One of these endocrine disruptors is 2,2‐bis(4‐hydroxy‐3‐methylphenyl)propane (BPP). In this work the molecular recognition interaction of BPP with β‐cyclodextrin (β‐CD) was studied using IR spectroscopy and steady state fluorescence spectroscopy, and the photocatalytic degradation behaviour of BPP based on molecular recognition interaction was investigated in a TiO2/UV–visible (λmax = 365 nm) system. This might provide a new method for the treatment of some organic pollutants in wastewater. RESULTS: β‐CD reacts with BPP to form a 1:1 inclusion complex, the formation constant of which is 4.94 × 103 L mol?1. The photodegradation rate constant of BPP after molecular recognition by β‐CD showed a 1.42‐fold increase in the TiO2/UV–visible (λmax = 365 nm) system. The photodegradation of BPP depended on the concentration of β‐CD, the pH value, the gaseous medium and the initial concentration of BPP. The photodegradation efficiency of BPP with molecular recognition was higher than that without molecular recognition. After 100 min of irradiation the mineralisation efficiency of BPP after molecular recognition by β‐CD reached 94.8%, whereas the mineralisation efficiency of BPP before molecular recognition by β‐CD was only 40.6%. CONCLUSION: The photocatalytic degradation of BPP after molecular recognition by β‐CD can be enhanced in the TiO2/UV‐visible (λmax = 365 nm) system. This enhancement is dependent on the enhancement of the adsorption of BPP, the moderate inclusion depth of BPP in the β‐CD cavity and the increase in the frontier electron density of BPP after molecular recognition. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
A series of 2‐hydroxyethyl methacrylate/1‐vinyl‐3‐(3‐sulfopropyl)imidazolium betaine (HEMA/VSIB) copolymeric gels were prepared from various molar ratios of HEMA and the zwitterionic monomer VSIB. The influence of the amount of VSIB in copolymeric gels on their swelling behavior in water and various saline solutions at different temperatures and the drug‐release behavior, compression strength, and crosslinking density were investigated. Experimental results indicated that the PHEMA hydrogel and the lower VSIB content (3%) in the HEMA/VSIB gel exhibited an overshooting phenomenon in their dynamic swelling behavior, and the overshooting ratio decreased with increase of the temperature. In the equilibrium water content, the value increased with increase of the VSIB content in HEMA/VSIB hydrogels. In the saline solution, the water content for these gels was not affected by the ion concentration when the salt concentration was lower than the minimum salt concentration (MSC) of poly(VSIB). When the salt concentration was higher than the MSC of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. However, the swelling behavior of gels in KI, KBr, NaClO4, and NaNO3 solutions at a higher concentration would cause an antipolyelectrolyte phenomenon. Besides, the anion effects were larger than were the cation effects in the presence of a common anion (Cl?) with different cations and a common cation (K+) with different anions for the hydrogel. In drug‐release behavior, the addition of VSIB increased the drug‐release ratio and the release rate. Finally, the addition of VSIB in the hydrogel improved the gel strength and crosslinking density of the gel. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2888–2900, 2001  相似文献   

9.
3‐Sulfenylindoles can be efficiently prepared in moderate to good yields from 2‐(1‐alkynyl)benzenamines and disulfides using the palladium/air catalytic systems. The study also provides a useful route to the synthesis of fipronil analogues.  相似文献   

10.
Highly substituted 1,2‐allenyl ketones can be easily and efficiently prepared from organometallic reagents and readily available 2‐(1‐alkynyl)‐2‐alken‐1‐ones. The synthetic application of 1,2‐allenyl ketone products was also showcased by palladium‐catalyzed further transformation.  相似文献   

11.
The Pd‐catalyzed decarboxylative cross‐coupling reaction of 4‐substituted quinolin‐2(1H)‐one‐3‐carboxylic acids with (hetero)aryl halides is described. With palladium(II) bromide and triphenylarsine ligand as the catalyst system, a variety of 4‐substituted 3‐(hetero)aryl quinolin‐2(1 H)‐ones and related heterocycles, such as 4‐substituted 3‐arylcoumarins can be prepared in good to excellent yields.  相似文献   

12.
A copper‐catalysed multicomponent coupling reaction between readily available (Z)‐3‐iodoacrylic acids, terminal alkynes, and primary amines was developed to smoothly access a small library of 5‐hydroxy‐1H‐pyrrol‐2(5H)‐ones in good yields. This practical and general process was applied to a short‐steps synthesis of the natural product pulchellalactam.

  相似文献   


13.
The first organocatalytic Mannich reaction of 5H‐oxazol‐4‐ones with various readily prepared aryl‐ and alkylsulfonimides has been developed. Two commercially available pseudoenantiomeric Cinchona alkaloids‐derived tertiary amine/ureas have been demonstrated as the most efficient catalysts to access the opposite enantiomers of the Mannich products with equally excellent enantio‐ and diastereoselectivities. From the Mannich adducts, important α‐methyl‐α‐hydroxy‐β‐amino acid derivatives, such as the α‐methylated C‐13 side chain of taxol and taxotere, can be conveniently prepared.  相似文献   

14.
The vitamin D hormone, 1α,25‐dihydroxyvitamin D3 [1,25‐(OH)2D3], exerts its hormonal effects predominantly on intestine, bone, and kidney, where it plays a crucial role in calcium and phosphorus homeostasis and bone mineralization. In addition to its classical actions, 1,25(OH)2D3 exerts pleiotropic effects in a wide variety of target tissues and cell types, often in an autocrine/paracrine fashion. These biological activities of 1,25(OH)2D3 have suggested a multitude of potential therapeutic applications for the vitamin D hormone in the treatment of hyperproliferative disorders (e.g. cancer and psoriasis), immune dysfunction (autoimmune diseases), and endocrine disorders (e.g. hyperparathyroidism). However, the calcemic effects induced by 1,25(OH)2D3—hypercalcemia, increased bone resorption, and soft tissue calcification—limit the use of the natural ligand in these clinical applications. Therefore, numerous 1,25(OH)2D3 analogues have been synthesized with the intent of producing therapeutic agents devoid of hypercalcemic and hyperphosphatemic side effects. To this aim, much attention has been focused on the development of 19‐nor‐vitamin D3 derivatives that lack the ring‐A exocyclic methylene group (C19). In this review, the 19‐nor‐1,25(OH)2D3 analogues are classified according to modifications made at the A‐ring, the side chain, or both the A‐ring and side chain, as well as other positions. The biological activities of these 19‐nor‐1,25(OH)2D3 analogues are summarized and their structure–activity relationships and binding features with the vitamin D receptor (VDR) are discussed.  相似文献   

15.
A model margarine was stored under a temperature fluctuation cycle of 5—20 °C until granular crystals were observed. Using information obtained from the granular crystals, the crystallization behaviors of major triacylglycerols of palm oil, 1,3‐dipalmitoyl‐2‐oleoyl‐glycerol (POP), 1‐palmitoyl‐2,3‐dioleoyl‐glycerol (POO), and their mixtures were then investigated. It was shown that in the model margarine, the POP content in the granular crystals was higher than in their surrounding materials, and the X‐ray diffraction pattern of the granular crystals revealed that they were the most stable polymorph, β. 99% pure POP, POO, and their mixtures were then stored under the above‐mentioned temperature cycle. POP was found to form the unstable polymorph, α, when cooled rapidly from the melt. Within 24 hours transformation into the γ polymorph and then into the β polymorph was observed. POO was shown to transform into the β' polymorph from α. When POP and POO were mixed, the β polymorph did not emerge, instead it was shown that POP and POO were both agglomerated in the mixtures, giving rise to the formation of granular crystals.  相似文献   

16.
A copper‐catalyzed tandem reaction of 1‐bromoethynyl‐2‐(cyclopropylidenemethyl)arenes with N‐allylsulfonamide proceeds smoothly, affording functionalized benzoindolines in moderate to good yields. The transformation is a four‐step cascade involving Ullmann coupling, aza‐Claisen rearrangement, 6π‐electrocyclization, and intramolecular rearrangement.  相似文献   

17.
Various 3‐pyrrolylindolin‐2‐ones and pyrrolylindeno[1,2‐b]quinoxaline were synthesized for the first time in high yields in water under neutral conditions by supramolecular catalysis involving β‐cyclodextrin. The β‐cyclodextrin can be recovered and reused a number of times without any loss of activity.  相似文献   

18.
4‐[4′‐(2‐Hydroxy‐1‐naphthylazo)phenyl]‐1,2,4‐triazolidine‐3,5‐dione ( HNAPTD ) ( 1 ) has been reacted with excess amount of n‐propylisocyanate in DMF (N,N‐dimethylformamide) solution at room temperature. The reaction proceeded with high yield, and involved reaction of both N? H of the urazole group. The resulting bis‐urea derivative 2 was characterized by IR, 1H‐NMR, elemental analysis, UV‐Vis spectra, and it was finally used as a model compound for the polymerization reaction. Solution polycondensation reactions of monomer 1 with Hexamethylene diisocyanate ( HMDI ) and isophorone diisocyanate ( IPDI ) were performed in DMF in the presence of pyridine as a catalyst and lead to the formation of novel aliphatic azo‐containing polyurea dyes, which are soluble in polar solvents. The polymerization reaction with tolylene‐2,4‐diisocyanate ( TDI ) gave novel aromatic polyurea dye, which is insoluble in most organic solvents. These novel polyureas have inherent viscosities in a range of 0.15–0.22 g dL?1 in DMF at 25°C. Some structural characterization and physical properties of these novel polymers are reported. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3177–3183, 2001  相似文献   

19.
α‐Alkyl‐β‐hydroxy esters were obtained via dynamic kinetic resolution (DKR) employing purified or crude E. coli overexpressed alcohol dehydrogenases (ADHs). ADH‐A from R. ruber, CPADH from C. parapsilosis and TesADH from T. ethanolicus afforded syn‐(2R,3S) derivatives with very high selectivities for sterically not impeded ketones (‘small‐bulky’ substrates), while ADHs from S. yanoikuyae (SyADH) and Ralstonia sp. (RasADH) could also accept bulkier keto esters (‘bulky‐bulky’ substrates). SyADH also provided preferentially syn‐(2R,3S) isomers and RasADH showed in some cases good selectivity towards the formation of anti‐(2S,3S) derivatives. With anti‐Prelog ADHs such as LBADH from L. brevis or LKADH from L. kefir, syn‐(2S,3R) alcohols were obtained with high conversions and diastereomeric excess in some cases, especially with LBADH. Furthermore, due to the thermodynamically favoured reduction of these substrates, it was possible to employ just a minimal excess of 2‐propanol to obtain the final products with quantitative conversions.  相似文献   

20.
The ammonium salt of 6‐amino‐2‐hydroxy‐3,5‐dinitropyrazine has been synthesised from 2,6‐dimethoxy‐3,5‐dinitropyrazine and its properties (DSC, crystal structure, impact sensitiveness and thermochemical properties) are compared with the analogous benzene derivative, ammonium 3,5‐diaminopicrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号