首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
BACKGROUND: Atom transfer radical polymerization (ATRP) is considered to be one of the better and easier synthetic tools for the preparation of polymers with controlled molecular weights and polydispersities. Ambient temperature ATRP of tert‐butyl acrylate (tBA) was studied in a detailed manner with ethyl 2‐bromoisobutyrate (EBrB) and tert‐butyl 2‐bromoisobutyrate (tBuBrB) as the initiators for three different degrees of polymerization. RESULTS: Details pertaining to the kinetics of polymerization using different initiators are reported. It is observed that dimethylsulfoxide accelerates the polymerization at room temperature. The use of Cu(II) as the deactivator produces very narrow dispersity polymers. A diblock copolymer, poly(tert‐butyl acrylate)‐block‐poly(methyl methacrylate), was synthesized from the poly(tBA) macroinitiator demonstrating the controlled living nature of the polymerizations. CONCLUSIONS: The rate of polymerization is more rapid with a secondary initiator (ethyl 2‐bromopropionate) compared to the tertiary initiators EBrB and tBuBrB. From the detailed kinetic results it is observed that tris(2‐dimethylaminoethyl)amine was a better ligand compared to tris(2‐aminoethyl)amine in terms of achieving controlled polymerization. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Much interest has recently been shown in improving the performance of lithium‐ion polymer batteries with gel polymer electrolytes (GPEs) due to a rapid expansion in industrial demand. Novel GPEs based on poly(vinylidene fluoride)‐graft‐poly(tert‐butyl acrylate) (PVDF‐gtBA) microporous mats are suggested in this study. RESULTS: Microfibrous polymer electrolytes were prepared using electrospinning and characterized for extent of grafting, morphology, crystallinity, electrochemical stability, ionic conductivity, interfacial resistance and cell cycleability. The degree of crystallinity was lower for tBA‐grafted PVDF mats than that of neat PVDF. The PVDF‐gtBA showed an improvement in the ionic conductivity, electrochemical stability, interfacial resistance and cyclic performance. CONCLUSION: The tBA‐grafted PVDF microporous electrolytes are promising candidates for enhancing the performance of lithium‐ion polymer batteries. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
Two monodisperse graft copolymers, poly(4‐methylstyrene)‐graft‐poly(tert‐butyl acrylate) [number‐average molecular weight (Mn) = 37,500, weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.12] and polystyrene‐graft‐poly(tert‐butyl acrylate) (Mn = 72,800, Mw/Mn = 1.12), were prepared by the atom transfer radical polymerization of tert‐butyl acrylate catalyzed with Cu(I) halides. As macroinitiators, poly{(4‐methylstyrene)‐co‐[(4‐bromomethyl)styrene]} and poly{styrene‐co‐[4‐(1‐(2‐bromopropionyloxy)ethyl)styrene]}, carrying 40% of the bromoalkyl functionalities along the chain, were used. The dependencies of molecular parameters on monomer conversion fulfilled the criteria for controlled polymerizations. In contrast, the dependencies of monomer conversion versus time were nonideal; possible causes were examined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2930–2936, 2002  相似文献   

4.
Ab initio reversible addition–fragmentation chain transfer (RAFT) emulsion polymerization of styrene/butyl acrylate was investigated with the trithiocarbonate macro‐RAFT agent poly(acrylic acid)‐block‐polystyrene (PAA‐b‐PS) as a stabilizer and a RAFT agent. Influences of the amount of ammonium persulfate (APS), the amount of PAA‐b‐PS and the mass ratio of monomers on emulsion polymerization and film properties are discussed. The particle morphology exhibited spherical‐like structure with particles of about 90 nm in diameter and relatively narrow particle size distribution characterized using transmission electron microscopy and dynamic laser scattering. Fourier transform infrared and 1H NMR spectra showed that the styrene/butyl acrylate emulsion was successfully synthesized. The monomer conversion increased initially with increasing amount of APS, from 0.4 up to 0.8 wt%, and then decreased. The particle size increased and its distribution decreased gradually with increasing amount of APS. The monomer conversion increased from 76.83 to 94.21% as the amount of PAA‐b‐PS increased from 3 to 4 wt%, and then decreased with further increase of PAA‐b‐PS. The particle size decreased and its distribution increased with increasing amount of PAA‐b‐PS. The water resistance and solvent resistance of the polymer films initially increased and then decreased with decreasing mass ratio of butyl acrylate to styrene. © 2014 Society of Chemical Industry  相似文献   

5.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization was used successfully to synthesize temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAAm), poly(methacrylic acid) (PMAA), and their temperature‐responsive block copolymers. Detailed RAFT polymerization kinetics of the homopolymers was studied. PNIPAAm and PMAA homopolymerization showed living characteristics that include a linear relationship between M n and conversion, controlled molecular weights, and relatively narrow molecular weight distribution (PDI < 1.3). Furthermore, the homopolymers can be reactivated to produce block copolymers. The RAFT agent, carboxymethyl dithiobenzoate (CMDB), proved to control molecular weight and PDI. As the RAFT agent concentration increases, molecular weight and PDI decreased. However, CMDB showed evidence of having a relatively low chain transfer constant as well as degradation during polymerization. Solution of the block copolymers in phosphate buffered saline displayed temperature reversible characteristics at a lower critical solution temperature (LCST) transition of 31°C. A 5 wt % solution of the block copolymers form thermoreversible gels by a self‐assembly mechanism above the LCST. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1191–1201, 2006  相似文献   

6.
AB diblock copolymers were prepared by use of poly(tert‐butyl (meth)acrylate) (PtBA/PtBMA) as monofunctional macroinitiator in atom transfer radical polymerization of various (meth)acrylates (methyl, butyl) in the presence of the CuBr/N, N, N′, N′, N″‐pentamethyldiethylenetriamine catalyst system. Then using the diblock copolymer as macroinitiator with a bromine atom at the chain end, ABC and ABA triblock copolymers containing at least one PtBA or PtBMA segment were synthesized via polymerization of the selected (meth)acrylic monomer. Gel permeation chromatography was applied to determine molecular weights and polydispersity indices. The latter, for block copolymers prepared without deactivator addition, were in the range 1.2‐1.6 with a high degree of polymerization (150‐500). The chemical compositions of the block copolymers were characterized with 1H nuclear magnetic resonance. The kind of combined segments and their lengths influenced the glass transition temperature (Tg) determined by differential scanning calorimetry. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
Block copolymers, polystyrene‐b‐poly(styrene‐co‐maleic anhydride), have been prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization technique using three different approaches: 1‐phenylethyl phenyldithioacetate (PEPDTA) directly as RAFT agent, mediated polystyrene (PS) block as the macromolecular PS‐RAFT agent and mediated poly(styrene‐maleic anhydride) (SMA) block with alternating sequence as the macromolecular SMA‐RAFT agent. Copolymers synthesized in the one‐step method using PEPDTA as RAFT agent possess one PS block and one SMA block with gradient structure. When the macromolecular RAFT agents are employed, copolymers with one PS block and one alternating SMA block can be produced. However, block copolymers with narrow molecular weight distribution (MWD) can only be obtained using the PS‐RAFT agent. The MWD deviates considerably from the typical RAFT polymerization system when the SMA is used as the RAFT agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Monodispersed crosslinked cationic poly(4‐vinylpyridine‐co‐butyl acrylate) [P(4VP‐BA)] seed latexes were prepared by soapless emulsion polymerization, using 2,2′‐azobismethyl(propionamidine)dihydrochloride (V50) as an initiator and divinylbenzene (DVB) or ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The optimum condition to obtain monodispersed stable latex was investigated. It was found that the colloidal stability of the P4VP latex can be improved by adding an adequate amount of BA (BA/4VP = 1/4, w/w), and adopting a semicontinuous monomer feed mode. Subsequently, poly(4‐vinylpyridine‐co‐butyl acrylate)/Poly(styrene‐co‐butyl acrylate) [P(4VP‐BA)/P(ST‐BA)] composite microspheres were synthesized by seeded polymerization, using the above latex as a seed and a mixture of ST and BA as the second‐stage monomers. The effects of the type of crosslinker, the degree of crosslinking, and the initiators (AIBN and V50) on the morphology of final composite particles are discussed in detail. It was found that P(4VP‐BA)/P(ST‐BA) composite microspheres were always surrounded by a PST‐rich shell when V50 was used as initiator, while sandwich‐like or popcorn‐like composite particles were produced when AIBN was employed. This is because the polarity of the polymer chains with AIBN fragments is lower than for the polymer with V50 fragments, hence leading to higher interfacial tension between the second‐stage PST‐rich polymer and the aqueous phase, and between PST‐rich polymer and P4VP‐rich seed polymer. As a result, the seed cannot be engulfed by the PST‐rich polymer. Furthermore, the decrease of Tg of the second‐stage polymer promoted phase separation between the seeds and the PST‐rich polymer: sandwich‐like particles formed more preferably than popcorn‐like particles. It is important knowledge that various morphologies different from PST‐rich core/P4VP‐rich shell morphology, can be obtained only by changing the initiator, considering P4VP is much more hydrophilic than PST. The zeta potential of composite particles initiated by AIBN in seeded polymerization shifted from a positive to a negative charge. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1190–1203, 2002  相似文献   

9.
10.
Reversible addition‐fragmentation chain transfer (RAFT) radical polymerization was used for controlled grafting of styrene and p‐chlorostyrene from the surface of ramie fiber. The hydroxyl groups in ramie fiber were first converted to thiocarbonylthio groups as the RAFT chain transfer agent then used to mediate the RAFT polymerization of styrene, and p‐chlorostyrene in tetrahydrofuran using azobis (isobutyronitrile) as initiator at 60°C. The grafted copolymers were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetry, and contact angle measurements. The results confirmed that grafting occurred on the surface of the ramie fiber, substantially increasing the water contact angle from 75.31° to 147° for polystyrene grafted ramie fiber (cell‐PS) and 135° for poly(p‐chlorostyrene) (cell‐PSCl), and improving the hydrophobicity of the grafted fiber. The homopolymers formed in the polymerization were analyzed by size exclusion chromatography to estimate the molecular weights and polydispersity indices (PDIs) of chains grafted from the surface of the ramie fiber, as well as showed narrow chain length distributions with a PDI of 1.32–1.70. These materials possess potential applications in many advanced technologies. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Polymerization reactions of butyl acrylate (BuA) were carried out using an organosamarium complex, SmMe(C5Me5)2(THF), as an initiator. Polymerization proceeds quantitatively to give high number‐average molecular mass polymers (Mn > 200,000) and narrow molecular weight distributions (Mw/Mn < 1.07). Irradiation of the resulting poly(BuA) with an electron beam (EB) gave crosslinked poly(BuA). Improved viscoelastic and adhesive properties of these polymers were useful for high‐temperature applications. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 432–437, 2001  相似文献   

12.
Reversible addition–fragmentation chain transfer polymerization (RAFT) was developed for the controlled preparation of polystyrene (PS)/poly(4‐vinylpyridine) (P4VP) triblock copolymers. First, PS and P4VP homopolymers were prepared using dibenzyl trithiocarbonate as the chain transfer agent (CTA). Then, PS‐b‐P4VP‐b‐PS and P4VP‐b‐PS‐b‐P4VP triblock copolymers were synthesized using as macro‐CTA the obtained homopolymers PS and P4VP, respectively. The synthesized polymers had relatively narrower molecular weight distributions (Mw/Mn < 1.25), and the polymerization was controlled/living. Furthermore, the polymerization rate appeared to be lower when styrene was polymerized using P4VP as the macro‐CTA, compared with polymerizing 4‐vinylpyridine using PS as the macro‐CTA. This was attributed to the different transfer constants of the P4VP and PS macro‐CTAs to the styrene and the 4‐vinylpyridine, respectively. The aggregates of the triblock copolymers with different compositions and chain architectures in water also were investigated, and the results are presented. Reducing the P4VP block length and keeping the PS block constant favored the formation of rod aggregates. Moreover, the chain architecture in which the P4VP block was in the middle of the copolymer chain was rather favorable to the rod assembly because of the entropic penalty associated with the looping of the middle‐block P4VP to form the aggregate corona and tailing of the end‐block PS into the core of the aggregates. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1017–1025, 2003  相似文献   

13.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
The synthesis of triblock copolymer poly(octadecyl acrylate‐b‐styrene‐b‐octadecyl acrylate), using atom transfer radical polymerization (ATRP), is reported. The copolymers were prepared in two steps. First, polystyrene was synthesized by ATRP using α,α′‐dichloro‐p‐xylene/CuBr/bpy as the initiating system; Second, polystyrene was further used as macroinitiator for the ATRP of octadecyl acrylate to prepare ABA triblock copolymers in the presence of FeCl2·4H2O/PPh3 in toluene. Polymers with controlled molecular weight (Mn = 17,000–23,400) and low polydispersity index value (1.33–1.44) were obtained. The relationship between molecular weight versus conversion showed a straight line. The effect of reaction temperature on polymerization was also investigated, showing a faster polymerization rate under higher temperature. The copolymers were characterized by FTIR, 1H‐NMR, DSC, and GPC and the crystallization behavior of the copolymers was also studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1539–1545, 2004  相似文献   

15.
Ultrasonically initiated emulsion polymerization of n‐butyl acrylate (BA) without added initiator has been studied. The experimental results show that high conversion of BA can be reached in a short time by employing an ultrasonic irradiation technique with a high purge rate of N2. The viscosity average molecular weight of poly(n‐butyl acrylate) (PBA) obtained reaches 5.24 × 106 g mol?1. The ultrasonically initiated emulsion polymerization is dynamic and complicated, with polymerization of monomer and degradation of polymer occurring simultaneously. An increase in ultrasound intensity leads to an increase in polymerization rate in the range of cavitation threshold and cavitation peak values. Lower monomer concentration favours enhancement of the polymerization rate. 1H NMR, 13C NMR and FTIR spectroscopies reveal that there are some branches and slight crosslinking, and also carboxyl groups in PBA. Ultrasonically initiated emulsion polymerization offers a new route for the preparation of nanosized latex particles; the particle size of PBA prepared is around 50–200 nm as measured by transmission electron microscopy. © 2001 Society of Chemical Industry  相似文献   

16.
Poly(styrene)‐poly(lactide) (PS‐PLA), poly (tert‐butyl styrene)‐poly(lactide) (PtBuS‐PLA) diblocks, and poly(tert‐butyl styrene)‐poly(styrene)‐poly(lactide) (PtBuS‐PS‐PLA) segmented and tapered triblocks of controlled segment lengths were synthesized using nitroxide‐mediated controlled radical polymerization. Well‐defined PLA‐functionalized macromediators derived from hydroxyl terminated TEMPO (PLAT) of various molecular weights mediated polymerizations of the styrenic monomers in bulk and in dimethylformamide (DMF) solution at 120–130°C. PS‐PLA and PtBuS‐PLA diblocks were characterized by narrow molecular weight distributions (polydispersity index (Mw/Mn) < 1.3) when using the PLAT mediator with the lowest number average molecular weight Mn= 6.1 kg/mol while broader molecular weight distributions were exhibited (Mw/Mn = 1.47‐1.65) when using higher molecular weight mediators (Mn = 7.4 kg/mol and 11.3 kg/mol). Segmented PtBuS‐PS‐PLA triblocks were initiated cleanly from PtBuS‐PLA diblocks although polymerizations were very rapid with PS segments ~ 5–10 kg/mol added within 3–10 min of polymerization at 130°C in 50 wt % DMF solution. Tapering from the PtBuS to the PS segment in semibatch mode at a lower temperature of 120°C and in 50 wt % DMF solution was effective in incorporating a short random segment of PtBuS‐ran‐PS while maintaining a relatively narrow monomodal molecular weight distribution (Mw/Mn ≈ 1.5). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

17.
Prepolymers of poly(ethylene oxide) (Pre-PEO) were synthesized by reacting azoisobutyronitrile (AIBN) with poly(ethylene glycol) (PEG), and their structures were characterized by IR and UV. The molecular weight of pre-PEO was related to the feed ratio and reaction time. These prepolymers can be used to prepare block copolymers—poly(ethylene oxide)-block-poly(butyl acrylate) (PEO-b-PBA) by radical polymerization in the presence of butyl acrylate (BA). Solution polymerization was a suitable technique for this step. The yield and the molecular weight of the product were related to the ratio of the prepolymer to BA, the reaction time, and temperature. GPC showed that the molecular weight increased with a higher ratio of BA to pre-PEO. The intrinsic viscosity of the copolymers was only slightly dependent on reaction time, but decreased at higher reaction temperatures, as did the amount of PBA homopolymer. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1667–1674, 1997  相似文献   

18.
Self‐assembly of thermo‐sensitive poly (t‐butyl acrylate)‐b‐poly(N‐isopropylacrylamide) (PtBA‐ b‐PNIPAM) micelles in aqueous medium and its applications in controlled release of hydrophobic drugs were described. PtBA‐b‐PNIPAM was synthesized by atom transfer radical polymerization and aggregated into thermo‐sensitive core‐shell micelles with regular spheres in water, which was confirmed by 1H‐NMR, fluorescence spectroscopy, transmission electron microscopic (TEM), and UV–vis spectroscopic techniques. The critical micelle concentration of micelles decreased with the increase of the hydrophobic components. The anti‐inflammation drug naproxen (NAP) was loaded as the model drug into polymeric micelles, which showed a dramatic thermo‐sensitive fast/slow switching behavior around the lower critical solution temperature (LCST). When the temperature was enhanced above LCST, release of NAP from core‐shell micelles was accelerated ascribed to the temperature‐induced deformation of micelles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Zhongyu Li 《Polymer》2006,47(16):5791-5798
A novel well-defined amphiphilic graft copolymer of poly(ethylene oxide) as main chain and poly(methyl acrylate) as graft chains is successfully prepared by combination of anionic copolymerization with atom transfer radical polymerization (ATRP). The glycidol is protected by ethyl vinyl ether first, then obtained 2,3-epoxypropyl-1-ethoxyethyl ether (EPEE) is copolymerized with EO by initiation of mixture of diphenylmethyl potassium and triethylene glycol to give the well-defined poly(EO-co-EPEE), the latter is deprotected in the acidic conditions, then the recovered copolymer [(poly(EO-co-Gly)] with multi-pending hydroxyls is esterified with 2-bromoisobutyryl bromide to produce the ATRP macroinitiator with multi-pending activated bromides [poly(EO-co-Gly)(ATRP)] to initiate the polymerization of methyl acrylate (MA). The object products and intermediates are characterized by NMR, MALDI-TOF-MS, FT-IR, and SEC in detail. In solution polymerization, the molecular weight distribution of the graft copolymers is rather narrow (Mw/Mn < 1.2), and the linear dependence of Ln [M0]/[M] on time demonstrates that the MA polymerization is well controlled.  相似文献   

20.
Two polyisoprene‐block‐poly(tert‐butyl acrylate) (PI‐b‐PtBA) samples and a poly(tert‐butyl acrylate) (PtBA) homopolymer (hPtBA) were prepared by anionic polymerization and characterized by light scattering, size exclusion chromatography, and NMR. The tert‐butyl groups were removed from one of the diblocks to yield amphiphilic polyisoprene‐block‐poly(acrylic acid) (PI‐b‐PAA). PI‐b‐PAA was then used as the surfactant to disperse dichloromethane containing PI‐b‐PtBA and hPtBA at different weight ratios as oil droplets in water. Solid microspheres containing segregated polyisoprene (PI) and PtBA/hPtBA domains were obtained after dichloromethane evaporation. Permanent microspheres were obtained after PI domain crosslinking with sulfur monochloride. Porous microspheres were produced after the hydrolysis of PtBA and the extraction of the homopoly(acrylic acid) chains. The shape and connectivity of the poly(acrylic acid)‐lined pores were tuned by changes in the PtBA/hPtBA content in the precursor microspheres. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2785–2793, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号