首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 185 毫秒
1.
采用计算流体动力学方法在欧拉坐标系下求解连续相运动方程,在拉格朗日坐标系下求解离散相颗粒轨道方程,并利用冲蚀方程研究了管内油、水、砂多相流中固体颗粒运动与管道冲蚀的相互关系,预测最大冲蚀发生位置。结果表明:弯管冲蚀最严重处位于下游直管段与弯头连接处外侧,T型堵头管冲蚀最严重处位于上下游直管段交接处内侧,T型堵头管的最大冲蚀速率远大于弯管的;T型堵头管中存在明显的颗粒相互碰撞区域以及颗粒滞留区域,在颗粒相互碰撞区域颗粒对管壁的碰撞能降低,在颗粒滞留区域颗粒的滞留减少了新来颗粒对堵头的碰撞,这两个区域都从一定程度上减小了颗粒对管道的冲蚀作用。  相似文献   

2.
目的 分析磨料射流在清水和非牛顿胍胶溶液中颗粒运动特性的差异,揭示非牛顿流体中磨料射流颗粒在近壁面的冲蚀行为,为在非牛顿流体中建立磨料射流冲蚀模型提供依据.方法 运用计算流体动力学(CFD)的方法,研究射流过程中清水和胍胶溶液的流场特性,分析流场对高速淹没射流过程中磨料颗粒运动特性的影响,包括撞击壁面的数目、速度和角度的区别.结合喷射式冲蚀实验,将实验结果与不同冲蚀模型预测的结果进行对比,优选出最佳预测模型.结果 胍胶溶液的近壁面(150μm)湍流动能高于清水,流速小于清水.在近壁面处的高剪切速率区,由于胍胶溶液的剪切稀释性,导致近壁面黏度下降到3.54 mPa·s,而在远离射流冲击中心的区域,最大黏度值可达25.4 mPa·s.在射流冲击中心区域,与清水相比,胍胶溶液中颗粒撞击靶材壁面的数目更少,撞击速度与撞击角度更小.将DNV、Oka和E/CRC Zhang模型的冲蚀预测结果与颗粒在胍胶溶液中的冲蚀实验结果进行了比较,发现DNV模型对冲蚀的预测不足,Oka和E/CRC Zhang模型预测值超过了实验值,而E/CRC Zhang模型的预测结果与实验值最为接近.结论 流体的剪切稀释非牛顿流变性会对射流过程中颗粒的运动产生影响,从而使材料表面出现不同的冲蚀形貌.通过对比不同冲蚀模型的预测值,发现在所涉及的实验工况以及所选择的冲蚀模型范围内,E/CRC Zhang模型是目前研究非牛顿胍胶溶液中固体颗粒冲蚀的首选模型.  相似文献   

3.
目的 研究石油开采过程中,携砂压裂液对变径T型流道壁面冲蚀磨损规律及主要影响因素.方法 针对石油压裂管汇及井下喷砂器等工具中常见的变径T型流道的冲蚀问题,建立了基于CFD-DEM的变径T型流道固液两相流冲蚀磨损预测模型,该模型中颗粒-颗粒、颗粒-壁面碰撞采用逆向迭代碰撞搜索算法,颗粒-流体耦合计算时间步长根据耦合收敛条件自适应调整.将数值方法与正交试验方法结合,分析各因素变化对均值主效应响应的优先排序和各因素的交互作用,并进行了单因素变化对冲蚀规律的影响.结果 单因素分析时入口流速增大,T型流道最大冲蚀速率和冲蚀面积均增大,冲蚀位置向支流道出口处移动,流体携带颗粒能力增强,堆积颗粒数量减小.砂比范围为5%~35%时,最大冲蚀速率与砂比正相关.最大冲蚀速率随粒径的增大而先增大后减小,随变径比的增大而减小.与最大冲蚀速率均值主效应分析结论一致,验证了正交试验结论的准确性.结论 径向流速、切向流速、管壁压力、最大冲蚀速率为衡量变径T型流道冲蚀程度的指标时,入口流速的影响最大,其次是支撑剂粒径、变径比、砂比,入口流速与其他因素的交互作用对冲蚀速率的影响最显著.  相似文献   

4.
陈虹潮  马军  熊新  李祥 《表面技术》2024,53(3):123-131
目的 探究高压隔膜泵单向阀阀隙流场冲蚀磨损产生的原因及主要影响因素。方法 基于固液两相流基本理论和冲蚀模型,考虑颗粒保护效应及磨蚀效应,采用计算流体力学(CFD)方法模拟单向阀阀隙流场的冲蚀磨损行为,探究矿粉颗粒体积分数、颗粒粒径、单向阀半锥角、胶垫突出高度等参数对单向阀冲蚀磨损特性的影响。结果 矿粉颗粒紧贴阀芯壁面的剪切运动是造成阀芯发生冲蚀磨损失效的主要原因。当矿粉的体积分数由0.1增大到0.5时,由冲蚀造成的最大冲蚀磨损速率随之减小,由磨蚀造成的平均冲蚀磨损速率随之增大。当矿粉粒径为0.025~0.048 mm时,随着矿粉粒径的增大,平均冲蚀磨损速率随之增大。当矿粉粒径超过0.048 mm时,平均冲蚀磨损速率逐渐减小。当单向阀半锥角由30°增大到45°时,阀隙流场的最大流速由12.23 m/s减小至9.19 m/s,矿粉颗粒对阀芯壁面的最大冲蚀磨损速率减小了41.16%。阀隙流场的最大流速和冲蚀磨损速率随着胶垫突出高度h的增大而增大,同时位置也发生了相应变化。结论 矿粉颗粒体积分数的增加会加重粒子对阀芯壁面的损伤程度,随着粒径的增加,泵阀的最大冲蚀磨损速率先增大后减小,增大半锥角可以缓解颗粒对壁面的冲蚀磨损,增大胶垫突出高度会导致冲蚀磨损区域逐渐向胶垫突出位置集中。  相似文献   

5.
白莉  商鹏程  刘强  董祥伟 《表面技术》2022,51(10):218-225, 292
目的 分析液相流动、颗粒、管道结构参数对固液两相流弯管冲蚀的影响,设计一种弯管防蚀减磨防护方案。方法 通过循环管路试验分析流速、颗粒粒径和颗粒形状对弯管冲蚀率的影响,并通过数值模拟探讨渐扩式防护方案对固液两相流在弯管段流场分布的影响。结果 采用失重法分析试验结果,在含砂(质量分数2.5%,砂粒直径20~40目)的X80钢管结构下,冲蚀后贴片的质量损失率达到6.85%。经分析,试验贴片表面的主要损伤特征为弯头外拱壁的冲蚀率高于内拱壁,两侧壁面的质量损失率介于内外壁之间。采用数值模拟渐扩管(3∶4、3∶5、1∶2)对冲蚀的影响,在高流速(2.5 m/s)时,扩径比为1∶2渐扩管的冲蚀率下降了约30%,效果最为明显;在流体流速低于0.5 m/s时,粒径为200 μm的颗粒沉积增大了弯管外壁的局部磨损。尖角颗粒和球形颗粒对壁面的冲蚀效果不同,模拟的壁面冲击力有明显区别。结论 弯管段是典型的三维螺旋流动,在弯管段外拱壁的壁面附近为流动的高压低速区,内拱壁面附近流动为低压高速区。在冲蚀–腐蚀交互的过程中,管道外拱壁的局部损伤主要是因多次受到固体颗粒的冲击而积累的冲刷和磨损作用,内拱壁的损伤机理以腐蚀增重作用更为显著,而固体颗粒受到流体沿管壁方向轴对称的二次流剪切作用,对管道两侧壁面的损伤主要贡献了犁削和磨蚀作用,颗粒形状也影响了壁面损伤机制。防护方案是弯管段采用渐扩段圆管。数值试验表明,在颗粒粒径和流速一定时,采用特定比例的渐扩弯管段降低了流体通过弯管时的流速和湍流强度,能够达到减小冲蚀率的效果。  相似文献   

6.
黎伟  李配  舒晨旭 《表面技术》2020,49(8):178-184
目的提高工业生产过程中弯管冲蚀预测可靠度。方法在拉格朗日坐标系,通过CFD-DPM模型求解在流体作用下固体颗粒对弯管的冲蚀问题,并利用冲蚀方程研究流体速度、固体颗粒直径和固体颗粒质量流量分别与弯管冲蚀之间的关系,预测弯管最大冲蚀位置及模拟数值。结果通过仿真得到弯管冲蚀最大冲蚀位置主要集中在弯管出口的水平两侧和弯管入口的垂直两侧。随着固流体速度u由8 m/s增大至18 m/s时,固体颗粒对弯管的最大冲蚀速率增大了9.912倍;冲蚀固体颗粒的质量流量f由0.2 kg/s增大到0.8 kg/s时,弯管最大冲蚀速率增大了4.527倍;当仿真过程中固体颗粒直径由200μm增大到900μm时,弯管的最大冲蚀速率增大了3.94倍。结论当固体颗粒直径、固体颗粒速度和固体颗粒质量流量不变时,弯管冲蚀随着流体速度的增大而增大,弯管冲蚀区域在弯管出口水平位置逐渐增大。当固体颗粒直径增大,流体速度固体颗粒质量不变时,固体颗粒在惯性力作用下,弯管肘部的冲蚀逐渐增大,弯管出口水平两侧冲蚀逐渐减小。弯管冲蚀在固体颗粒质量流量增大时,呈增长趋势。  相似文献   

7.
固体颗粒的冲蚀磨损是导致液体管道壁面磨损甚至失效的主要原因。本文基于计算流体动力学(CFD)方法,研究弯管在不同条件下冲蚀磨损分布规律。对8种常用的冲蚀模型分别进行计算评估,结果显示,基于DNV冲蚀模型的预测结果与实验结果吻合较好。基于DNV模型研究不同颗粒属性下弯管冲蚀磨损的分布规律。结果表明:随着颗粒直径从10 μm 增加到200 μm,最大磨损速率先减小后增大;当颗粒质量流量为0.02~0.20 kg/s 时,最大磨损速率随着颗粒质量流量的增大而线性增大;随着颗粒形状系数从0.2增加到1.0,最大磨损速率先增大后减小。研究结果可为实际工程应用提供一定的理论支撑。  相似文献   

8.
弯管冲蚀是不可忽视的重要问题,直接关系到管路输送系统的安全运行及管道的使用寿命。针对这一问题,提出一种四边形、等腰梯形和等腰三角形3种横截面形状的肋条,分别安装在弯头外径方向不同位置,并考虑均匀安装多个肋条对冲蚀的影响。采用CFD-DPM方法对所提出的具有肋条结构的弯管抗冲蚀特性进行数值模拟。模拟结果表明:肋条安装在颗粒壁面第一次碰撞之前,一定程度上抑制冲蚀,且肋条背部形成低速逆流循环区,保护该区域壁面。3种不同横截面形状的肋条中,抗冲蚀作用最佳的为等腰三角形肋。肋深越大,保护范围越大,但影响颗粒碰撞角度,增大颗粒与其碰撞频率,并非深度越大抗冲蚀性能越佳。弯头部分均匀分布多个肋条也具有明显的抗冲蚀特性。其结论可为弯管的抗冲蚀优化设计提供新的设计方案。  相似文献   

9.
目的研究低温条件下冰晶颗粒随水流进入弯管并对弯管造成的冲蚀磨损,确定弯管关键防护区域。方法通过欧拉-拉格朗日双向耦合法,研究了冰晶颗粒的斯托克斯数、流速、粒径、质量流率以及管道弯径比对磨损特性的影响。结果冰晶颗粒的斯托克斯数会显著影响最大磨损率区域变化,当斯托克斯数由2.8增大至5.84时,最大磨损率区域由弯头内侧拱壁向弯头外拱壁与出口管道连接处转移,斯托克斯数高出或低于该范围时,最大磨损率位置不再发生变化,斯托克斯数的增加在一定范围内对最大磨损率没有绝对性影响。流速、粒径和质量流率的增大会使得最大磨损率不断升高,粒径和流速的变化会改变最大冲蚀磨损区域,而质量流率的改变对最大冲蚀磨损区域没有明显影响。弯径比的增大也会使得最大冲蚀磨损区域由弯头内拱壁向外拱壁与直管连接处转移,并降低最大磨损率。结论冰水两相流弯管的最大冲蚀磨损区域主要集中在弯头内拱壁、弯头外拱壁与出口直管连接处、靠近弯头侧壁三处,且大弯径比的管道可实现减磨防护。  相似文献   

10.
敬佳佳  唐曦  陈文斌  张志东  万夫  何莎 《表面技术》2021,50(12):329-339, 355
目的 研究高产天然气井气固两相流对放喷管汇的冲蚀机理及规律.方法 利用CFD软件对放喷管汇冲蚀进行研究,使用雷诺平均Navier-Stokes(RANS)方程求其气相的运动状态,并用离散相模型(DPM)计算出颗粒运动轨迹.然后使用Oka冲蚀磨损模型开展弯管角度、弯管位置、放喷量等5种因素与壁面冲蚀规律研究,最后使用最大冲蚀速率、壁面质量损失以及管汇刺漏时间等3种指标评价管汇的冲蚀特性.结果 在控制单因素变量的前提下,随着含砂率从1%增长到5%时,弯管最大冲蚀速率增加了约4倍;随着放喷量从3.0×105 m3/d增加到5.1×106 m3/d时,最大值出现在1.0×106 m3/d附近,弯管最大冲蚀速率相比3.0×105 m3/d增加了3.7倍;当弯管角度从90°增加到165°时,最大冲蚀速率下降了85%,但120°弯管最大冲蚀速率最大;随着弯管距出口距离从5 m增加到30 m时,最大冲蚀速率下降了86%;当颗粒形状系数从0.67增加到1时,最大冲蚀速率增大了5倍.结论 含砂率与最大冲蚀速率相关度最大,弯管位置与最大冲蚀速率的相关度最小.最大冲蚀速率随含砂率、颗粒形状系数的增加而增大,随弯管角度和距出口直管段长度的增加而减小,但120°弯管冲蚀最严重.随放喷量的增加,弯管最大冲蚀速率呈现出先增大、后减小、最后趋于平稳的规律.  相似文献   

11.
利用计算流体力学数值模拟软件Fluent,采用DPM模型中的稳态方法和随机轨道模型,进行颗粒的运动轨迹追踪。考虑到离散相对连续相的影响,采用相间耦合方法,基于斯托克斯数(St)进行了一系列颗粒对弯管管壁的冲蚀数值模拟。结果表明:弯管入口直管段,冲蚀速率很小且均匀;在随后的弯管段,颗粒聚集较多,该处冲蚀速率较大;出口直管段,当St1时,冲蚀情况由弯管外侧沿着管壁逐渐均匀过渡到整个管壁四周,管壁最大冲蚀速率随St的增大而略有增大,但增幅很小。当St1时,颗粒在内外管壁之间变性跃移,管壁冲蚀呈现不连续的点状冲蚀,管壁最大冲蚀速率随St的增大而略有增大,增幅很小,但明显大于St1时的最大冲蚀速率。  相似文献   

12.
单斌  陈平  乔小溪  赵元琪 《表面技术》2019,48(12):247-256
目的分析煤气化黑水处理系统管道的失效行为,明确失效特征,分析失效机理及影响因素,指导弯管的失效预防,延长其服役寿命。方法采用扫描电子显微镜(SEM)对管道进行微观形貌检测,并采用能量色散谱(EDS)和X射线衍射(XRD)对腐蚀产物进行检测分析,最后通过计算流体动力学(CFD)仿真分析其流场情况。结果失效管道内壁面有着明显的流水冲蚀形貌,且布满小凹坑及疏松多孔的褐色腐蚀产物。EDS结果显示,腐蚀产物主要由Fe、S和O元素构成,XRD进一步测得腐蚀产物多为FeS、Fe3O4及FeO等。CFD仿真结果与实际失效工况吻合,二次流、粒径、速度以及斯托克斯数的变化对固体颗粒运动轨迹影响较大,并进一步影响管道冲蚀的高危区位置。结论管道失效的主要原因是黑水中的H2S腐蚀和煤粉颗粒冲蚀的耦合作用,其弯管区域外拱出口位置和下游水平管底部位置为主要高危区,同时管道高危区位置受多种因素影响,相应部位要提前做好预防准备,实际工况中适当减小流速可以实现一定减磨防护作用。  相似文献   

13.
付鹏  刘洛航  杨卫平  刘仁鑫  张凯 《表面技术》2021,50(12):303-310, 319
目的 针对饲料输送管道气固两相流对弯管壁面冲蚀磨损严重的问题,提出一种在弯管外侧加设辅助气流的新型结构.方法 运用计算流体力学方法,采用离散相模型(Discrete Phase Model,DPM)研究普通和新型弯管的冲蚀磨损情况,模型的有效性通过普通弯管压降梯度实验加以验证.通过分析两种弯管的流场分布情况,进一步研究空气进口速度、颗粒质量流量和颗粒粒径等因素对弯管冲蚀磨损的影响.结果 随着空气进口速度的增加,弯管的平均冲蚀磨损速率先减小、后增大,但新型弯管的平均冲蚀磨损速率降低了7.1%~8.5%,且当空气进口速度为35 m/s时,平均冲蚀磨损速率最小.当颗粒质量流量增加时,弯管平均冲蚀磨损速率基本呈线性增长,但新型弯管平均冲蚀磨损速率的增长速率略小于普通弯管,且平均冲蚀磨损速率降低了8.2%~9.7%.当颗粒粒径增加时,弯管的平均冲蚀磨损速率先急剧增大、后平缓变化,但新型弯管平均冲蚀磨损速率降低了8.2%~17%.结论 通过研究发现,弯管外侧均存在冲蚀磨损,但新型结构均能有效减小弯管的冲蚀磨损.颗粒质量流量对弯管冲蚀磨损的影响最大,且颗粒质量流量越大,平均冲蚀磨损速率越大.颗粒粒径对降低弯管冲蚀磨损的效果最好,且颗粒粒径越小,效果越佳.  相似文献   

14.
A novel and generally applicable computer simulation was developed to predict the time evolution of the eroded profiles of air abrasive jet machined surfaces, as a function of process parameters such as: abrasive nozzle size, inclination and distance to target surface, abrasive jet particle velocity, size and flux distribution. The effect of collisions between incoming and rebounding particles was included by the tracking of individual particles, performing inter-particle and particle to surface collision detection, and implementing collision kinematics. The target surface advancement was determined by representing the surface by a grid of cubic cells, each of which was assigned a damage parameter based on the number of particles impacting it. The predictions of eroded profiles of the simulation were tested against those that are experimentally measured for a typical microabrasive blasting setup, with good agreement at low particle flux, and reasonable agreement at high particle flux.  相似文献   

15.
A model was developed to describe the motion of particles which are connected by liquid bridges. The model takes into account capillary force, particles inertia, viscous drag of liquid, and elastic collision. Below a critical thickness of the liquid film between particles, the liquid is assumed to be in a visco-elastic state and follows the Maxwell model. For a single pair of particles, the model predicts that, as viscosity increases, the first particle contact occurs later, and subsequent particle bounce is weaker. In the case of planar arrays of 5000 particles, the particles agglomerate, generating pores between particle clusters during the rearrangement. The final density obtainable by particle rearrangement increases as viscosity increases. This result is attributed to the suppression of fast local densification in the case of high viscosity. The implications and limitations of the present analysis are also presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号