共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
YOLOv3目标检测算法检测精度高,检测速度快,能够实现对交通标志的实时检测。但由于YOLOv3模型要求设备具有较强的运算能力及较大的内存,难以直接部署在车辆等资源受限平台上。针对此问题,提出了一种Strong Tiny-YOLOv3目标检测模型,该模型通过引入FireModule层进行通道变换,在减小模型参数的同时能够加深模型深度。同时,模型在FireModule层之间加入short-cut来增强网络的特征提取能力。实验结果表明,模型在保持较高检测精度的前提下,能够极大减小YOLOv3模型对设备的依赖。与Tiny-YOLOv3模型相比,Strong Tiny-YOLOv3模型的参数量减少了87.3%,实际内存大小减少了77.9%,在GeForce 940MX上的检测速度提高了22.8%,且在GTSDB和CCTSDB交通标志数据集上的检测mAP分别提高了12%和3.8%。 相似文献
3.
随着ETC通道车辆违规行为的不断增加,针对该场景下不同尺度和类型的车辆检测已经成为城市交通管理的一项重要工作.论文基于高速公路ETC场景下的真实数据集,提出了一种车辆检测的优化方法.为提高算法在车辆检测方面的适用性和准确性,论文在YOLOv3算法的基础上采用GIOU作为YOLOv3的边界框回归损失函数,同时用调整过的锚... 相似文献
4.
无人驾驶关键技术不断突破,并在更多场景中得到应用。研究车辆行人自动化检测算法具有十分重要的意义。为了提升系统的检测效果,解决因目标物体尺寸太小、目标遮挡以及复杂环境等因素影响所导致的检测精度不高的问题,提出了一种改进的YOLOv4模型对数据集进行训练,采用轻量化网络Mobilenetv2代替YOLOv4中原有的主干网络,以此获取有效特征层,降低原有网络的运算量和参数量。实验结果表明,改进的Mobilenetv2-YOLOv4模型可以达到40.76%的平均精度,每个epoch的学习时间仅约12 min,既保证了识别精度又提高了检测速度。 相似文献
5.
根据模式识别理论和支持向量机(SVM)网络技术,对运动车辆的检测和模式识别、分类进行了研究,提出了基于双帧差“或”运算检测法和基于SVM网络的车型识别和分类算法。实验结果表明,所设计的检测方法和SVM模式识别方法能够快速有效地识别车辆类型并正确地进行分类。 相似文献
6.
为了提高船舶火灾检测的检测效率,在基于视频的方式下,提出将原始帧和光流融合的深度学习检测方法。首先,利用模拟试验和部分公开数据集建立火灾视频数据集;其次,对火灾视频进行处理,提取原始帧和对应的光流;然后,使用像素级融合的方法融合原始帧和光流,充分利用视频的静态信息和动态信息;最后,使用YOLOv3算法,并利用迁移学习方法,实现火灾检测模型的训练。实验结果表明,所用算法能够更有效地识别烟雾和火焰,显著地减少了火灾视频中的误检情况,进行抽帧检测时能够满足实时检测的要求。 相似文献
7.
在自动驾驶场景中,对前车尾灯的检测是一个广泛且具有研究意义的问题.Darknet53是YOLOv3的特征提取网络,其使用5个残差单元对原始图像进行特征提取并采用三尺度的特征图进行融合预测,尺寸越小对大目标的特征表达能力越强.因为尾灯检测属于小目标检测,所以本文舍去Darknet53的最后一个残差单元,同时增加小尺度特征... 相似文献
8.
针对自动驾驶场景下行人检测任务中对中、小尺寸目标和被遮挡目标的检测需求,以及现有深度学习模型的不足,提出基于ResNet34_D的改进YOLOv3模型:通过改进残差网络的卷积块结构提出ResNet34_D,并作为YOLOv3的主干网络以降低模型尺寸和训练难度;在ResNet34_D的3个尺度卷积特征图之后,增加SPP层和DropBlock模块以提高模型的泛化能力;基于K-means聚类算法确定自适应的多尺度锚框尺寸,提高对大、中、小3种尺寸行人目标的检测能力;引入DIoU损失函数,提高对被遮挡目标的识别能力.所提出模型的消融实验验证了各个改进部分在提高模型检测准确率上的有效性.实验结果表明,所提出的基于ResNet34_D的改进YOLOv3模型具有较好的准确率和实时性,在BDD100K-Person数据集上的AP50达到69.8%,检测速度达到130 FPS.由所提出方法与现有目标检测方法的对比实验可知,所提出方法对小目标和遮挡目标的误检率更低,速度更快,具有一定的实际应用价值. 相似文献
9.
10.
11.
在复杂无约束自然场景下对车辆实时检测和相关信息的提取识别一直是计算机视觉领域内重要的研究内容之一。该领域问题的突破不但可以为汽车自动驾驶技术的实现和完善带来实际效果的提升,并且在停车场的自动停车调度算法和实时泊车监控系统的改进上有着重要的现实意义。针对当前实时车辆信息检测中存在的车辆检测区域不完整、精度不高以及无法对场景中较远车辆进行准确定位等相关问题,提出了一种Vehicle-YOLO的实时车辆检测分类模型。该模型在最新的YOLOv3算法基础上,通过更改图像输入参数,增强深度残差网络的特征提取能力,采用5个不同尺寸的特征图依次对潜在车辆的边界框提取等方式来提升车辆实时信息检测的精度和普适性,并通过KITTI、VOC等数据集进行性能验证和分析。实验结果表明,Vehicle-YOLO模型在KITTI数据集上达到了96%的均值平均精度,传输速度约为40 f/s,在精度提升的情况下仍能保持良好的实时检测速率。此外,Vehicle-YOLO检测模型在VOC等其余数据集上的实验结果也展现了不同程度的精度提升,故该模型在常见物体的定位检测中有较好的普适性,相较于传统的物体检测算法模型有更好的表现。 相似文献
12.
对图像或视频数据中的车辆进行检测是城市交通监控中非常重要并且具有挑战性的任务。该任务的难度在于对复杂场景中相对较小的车辆进行精准地定位和分类。针对这些问题,提出了一个单阶段的深度神经网络(DF-YOLOv3),实现城市交通监控中不同类型车辆的实时检测。DF-YOLOv3对传统的YOLOv3算法进行改进,首先增强深度残差网络提取车辆特征,然后设计6个不同尺度的卷积特征图,并与残差网络中相应尺度的特征图进行融合,形成最终的特征金字塔执行车辆预测任务。在KITTI数据集上的实验表明,提出的DF-YOLOv3方法在精度和速度上均能获得较高的检测性能。具体地,对于512×512分辨率的输入模型,基于英伟达1080Ti GPU,DF-YOLOv3获得93.61%的mAP(均值平均精度),速度达到45.48 f/s(每秒传输帧数)。特别地,对于精度,DF-YOLOv3比Fast R-CNN、Faster R-CNN、DAVE、YOLO、SSD、YOLOv2、YOLOv3与SINet表现更好。 相似文献
13.
为了更准确地检测高速公路隧道内停车行为,提出一种基于改进YOLOv3车辆检测模型的高速公路隧道内停车检测方法。通过筛选VOC数据集以及实际高速公路隧道内的车辆图片制作专门用于高速公路隧道内车辆检测的数据集,选取YOLOv3目标检测模型作为车辆检测的基础网络结构,并对其进行加深网络结构的改进使其能够准确检测隧道内的车辆。将Deep SORT跟踪算法应用于改进的停车检测模型中,对车辆进行跟踪从而计算行驶速度,并创新性地设置双重速度阈值来判别车辆的停车行为。实验结果表明,经过改进的YOLOv3模型相比于原模型,在VOC-vehicle数据集和Tunnel-vehicle数据集上的mAP都有所提升,最终获得了mAP为98.19%的高速公路隧道车辆检测模型。将基于改进YOLOv3的高速公路隧道内停车检测方法在高速公路隧道视频上进行测试,可以有效地在高速公路隧道中完成停车检测的任务。 相似文献
14.
针对复杂背景下的目标车型识别问题,提出一种基于视频序列的检测识别算法。运用帧差序列图像进行背景建模与更新,采用背景差分和LBP纹理分析法进行运动车辆的分割及阴影消除,提出车辆形状投影量的概念,将视频车辆二维形状信息降至一维,并设计二维输入模糊分类器,根据形状投影量和车高/车长比,完成车型的多种类精细识别。实验结果验证了该算法的有效性。 相似文献
15.
针对车型识别任务的特点,设计了一种基于深度哈希网络的车型识别方法,实现了在类间差异不明显、样本量较少的情况下进行车型检索和分类。对数据增广方法进行研究,针对车型数据集的特点,提出了适用于车型识别的数据增广方法,有效提升了小样本车型识别的准确率。深度哈希网络采用改进的HashNet网络来快速学习车辆的二值特征表达,针对深度哈希网络使用全连接层导致参数过多的问题,提出了HashNet-GAP网络,以全局平均池化层替换了HashNet中的部分全连接层。相对于HashNet网络,大幅度减少了参数数量,提升了前向计算速度和网络性能。实验结果表明,该车型识别方法能够对类间差距很小的不同车型进行有效识别,在小样本数据集上取得80.0%的Top1准确率,并且能够显著降低模型的存储消耗和内存消耗。 相似文献
16.
针对机械臂药盒抓取操作中对药盒定位和姿态估计的要求,提出一种基于YOLOv3深度学习算法和EPnP算法相结合的多药盒姿态估计方法,此方法主要分为多药盒定位和姿态估计两部分;首先通过YOLOv3算法实现药盒的快速精确定位,并通过定位框分割出单个药盒;然后进行特征提取和特征匹配并估计单应矩阵;通过单应矩阵的透视矩阵变换求得药盒平面4个角点的像素坐标并作为EPnP求解所需的2D点,结合药盒先验尺寸信息在相机坐标系下构建药盒对应的3D点坐标以实现药盒姿态求解;通过结合OptiTrack系统设计了药盒姿态精度对比实验,结果表明,该算法充分发挥了YOLOv3算法兼具快速性和准确性的优势,并且具有良好的姿态估计精度,总体算法速度达到15 FPS,药盒姿态估计平均误差小于0.5°。 相似文献
17.
针对YOLOv2算法实际检测到的小尺寸交通标志质量不佳,识别率低,实时性差的问题,提出一种基于改进YOLOv2的交通标志检测方法.首先,通过直方图均衡化、BM3D对图像增强以获取高质量图像;接着,将网络顶层卷积层输出的特征图进行精细划分,得到高细粒度的特征图,以检测高质量、小尺寸的交通标志;最后,采用归一化及优化置信度评分比例对损失函数进行改进.在结合CCTSD (中国交通标志检测数据集)和TT100K数据集的新数据集上进行实验,与YOLOv2网络模型相比,经过改进后的网络识别率提高了8.7%,同时模型的识别速度提高了15 FPS.实验结果表明:所提方法能够对小尺寸交通标志进行精准检测. 相似文献
18.
基于YOLOv3的嵌入式实时视频目标检测算法 总被引:1,自引:0,他引:1
深度神经网络在目标检测领域具有优异的检测性能,但其结构复杂、计算量大,难以在嵌入式设备上进行高性能的实时目标检测。针对该问题,提出一种基于YOLOv3的目标检测算法。采用半精度推理策略提高YOLO算法的推理速度,并通过视频运动自适应推理策略充分利用前后帧视频之间目标的关联性,降低深度学习算法的运行频率,进一步提高目标检测速度。在ILSVRC数据集上的实验结果表明,该算法可以在NVIDIA TX2嵌入式平台上实现28 frame/s的视频目标检测,且检测精度与原始的YOLOv3算法相当。 相似文献