首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
YOLOv3目标检测算法检测精度高,检测速度快,能够实现对交通标志的实时检测。但由于YOLOv3模型要求设备具有较强的运算能力及较大的内存,难以直接部署在车辆等资源受限平台上。针对此问题,提出了一种Strong Tiny-YOLOv3目标检测模型,该模型通过引入FireModule层进行通道变换,在减小模型参数的同时能够加深模型深度。同时,模型在FireModule层之间加入short-cut来增强网络的特征提取能力。实验结果表明,模型在保持较高检测精度的前提下,能够极大减小YOLOv3模型对设备的依赖。与Tiny-YOLOv3模型相比,Strong Tiny-YOLOv3模型的参数量减少了87.3%,实际内存大小减少了77.9%,在GeForce 940MX上的检测速度提高了22.8%,且在GTSDB和CCTSDB交通标志数据集上的检测mAP分别提高了12%和3.8%。  相似文献   

3.
随着ETC通道车辆违规行为的不断增加,针对该场景下不同尺度和类型的车辆检测已经成为城市交通管理的一项重要工作.论文基于高速公路ETC场景下的真实数据集,提出了一种车辆检测的优化方法.为提高算法在车辆检测方面的适用性和准确性,论文在YOLOv3算法的基础上采用GIOU作为YOLOv3的边界框回归损失函数,同时用调整过的锚...  相似文献   

4.
无人驾驶关键技术不断突破,并在更多场景中得到应用。研究车辆行人自动化检测算法具有十分重要的意义。为了提升系统的检测效果,解决因目标物体尺寸太小、目标遮挡以及复杂环境等因素影响所导致的检测精度不高的问题,提出了一种改进的YOLOv4模型对数据集进行训练,采用轻量化网络Mobilenetv2代替YOLOv4中原有的主干网络,以此获取有效特征层,降低原有网络的运算量和参数量。实验结果表明,改进的Mobilenetv2-YOLOv4模型可以达到40.76%的平均精度,每个epoch的学习时间仅约12 min,既保证了识别精度又提高了检测速度。  相似文献   

5.
基于SVM的车型检测和识别算法   总被引:2,自引:0,他引:2  
根据模式识别理论和支持向量机(SVM)网络技术,对运动车辆的检测和模式识别、分类进行了研究,提出了基于双帧差“或”运算检测法和基于SVM网络的车型识别和分类算法。实验结果表明,所设计的检测方法和SVM模式识别方法能够快速有效地识别车辆类型并正确地进行分类。  相似文献   

6.
为了提高船舶火灾检测的检测效率,在基于视频的方式下,提出将原始帧和光流融合的深度学习检测方法。首先,利用模拟试验和部分公开数据集建立火灾视频数据集;其次,对火灾视频进行处理,提取原始帧和对应的光流;然后,使用像素级融合的方法融合原始帧和光流,充分利用视频的静态信息和动态信息;最后,使用YOLOv3算法,并利用迁移学习方法,实现火灾检测模型的训练。实验结果表明,所用算法能够更有效地识别烟雾和火焰,显著地减少了火灾视频中的误检情况,进行抽帧检测时能够满足实时检测的要求。  相似文献   

7.
在自动驾驶场景中,对前车尾灯的检测是一个广泛且具有研究意义的问题.Darknet53是YOLOv3的特征提取网络,其使用5个残差单元对原始图像进行特征提取并采用三尺度的特征图进行融合预测,尺寸越小对大目标的特征表达能力越强.因为尾灯检测属于小目标检测,所以本文舍去Darknet53的最后一个残差单元,同时增加小尺度特征...  相似文献   

8.
针对自动驾驶场景下行人检测任务中对中、小尺寸目标和被遮挡目标的检测需求,以及现有深度学习模型的不足,提出基于ResNet34_D的改进YOLOv3模型:通过改进残差网络的卷积块结构提出ResNet34_D,并作为YOLOv3的主干网络以降低模型尺寸和训练难度;在ResNet34_D的3个尺度卷积特征图之后,增加SPP层和DropBlock模块以提高模型的泛化能力;基于K-means聚类算法确定自适应的多尺度锚框尺寸,提高对大、中、小3种尺寸行人目标的检测能力;引入DIoU损失函数,提高对被遮挡目标的识别能力.所提出模型的消融实验验证了各个改进部分在提高模型检测准确率上的有效性.实验结果表明,所提出的基于ResNet34_D的改进YOLOv3模型具有较好的准确率和实时性,在BDD100K-Person数据集上的AP50达到69.8%,检测速度达到130 FPS.由所提出方法与现有目标检测方法的对比实验可知,所提出方法对小目标和遮挡目标的误检率更低,速度更快,具有一定的实际应用价值.  相似文献   

9.
针对人体行为检测中相同行为差异大, 不同行为相似度高, 以及视觉角度、遮挡、不能实时检测等问题, 提出Hierarchical Bilinear-YOLOv3人体行为检测网络. 该网络采用YOLOv3在3个不同尺度上进行预测, 抽取YOLOv3金字塔特征提取网络中特定层作为Hierarchical Bilinear的输...  相似文献   

10.
基于人类视觉的X光图像违禁品检测往往受限于工作强度和复杂人流环境,给安检工作带来巨大挑战。使用人工智能方法对违禁品进行自动检测与判别,对辅助安检工作具有重要的现实意义。提出基于YOLOv3的X光图像违禁品目标检测模型,在传统YOLOv3的基础上增加了一个检测尺度,实现实时的X光图像违禁品的自动判别,即不仅能够辨别出违禁品的种类,还能对违禁品在图像中所处的位置进行标定。实验结果表明,改进后的YOLOv3在Precision、Recall、mAP和F1四个模型评价指标上均取得提高,其中mAP值达到96.2%,对于安检X光图像违禁品目标具有良好的检测效果。  相似文献   

11.
通过对车流量信息的检测来分析各道路拥堵情况,交通部门可以及时对拥堵路段做出疏通响应,改善交通状况,降低交通事故率.车流量信息检测对于实时性和准确性要求都很高,分析设计了基于YOLOv3的车辆检测方法与Deep-SORT的多目标跟踪方法,满足了车流量检测系统的实时性和准确性.在GPU为NVIDIA 1080TI环境下,系...  相似文献   

12.
当前的对象级排序算法或是忽略对象的Web特征,或是忽略与用户查询的相关度,效果都不太理想。针对这些不足,综合考虑对象的Web特征以及与查询词的相关度等因素,给出改进的H—PopRank算法。实验表明,该算法可以提高查全率级平均查准率和用户满意度。  相似文献   

13.
    
Digital picture forgery detection has recently become a popular and significant topic in image processing. Due to advancements in image processing and the availability of sophisticated software, picture fabrication may hide evidence and hinder the detection of such criminal cases. The practice of modifying original photographic images to generate a forged image is known as digital image forging. A section of an image is copied and pasted into another part of the same image to hide an item or duplicate particular image elements in copy-move forgery. In order to make the forgeries real and inconspicuous, geometric or post-processing techniques are frequently performed on tampered regions during the tampering process. In Copy-Move forgery detection, the high similarity between the tampered regions and the source regions has become crucial evidence. The most frequent way for detecting copy-move forgeries is to partition the images into overlapping square blocks and utilize Discrete cosine transform (DCT) components as block representations. Due to the high dimensionality of the feature space, Gaussian Radial basis function (RBF) kernel based Principal component analysis (PCA) is used to minimize the dimensionality of the feature vector representation, which improves feature matching efficiency. In this paper, we propose to use a novel enhanced Scale-invariant feature transform (SIFT) detector method called as RootSIFT, combined with the similarity measures to mark the tampered areas in the image. The proposed method outperforms existing state-of-the-art methods in terms of matching time complexity, detection reliability, and forgery location accuracy, according to the experimental results. The F1 score of the proposed method is 92.3% while the literature methods are around 90% on an average.  相似文献   

14.
YOLO系列算法的简化版本YOLOv3-Tiny具有较为简单的网络框架,对GPU显存要求较低,该算法虽然实时性较高,却存在精度较低的问题,在识别行车目标方面不能得到精确的结果。对此,本文首先改变输入图片的大小,目的是获取图片更多的横向信息,使得网络更容易学习行车的信息,其次改进算法的网络结构提高算法的精度,最终得出改进的YOLOv3-Tiny算法。实验结果表明,改进之后的算法在保证实时性的情况下,提高了精确性。  相似文献   

15.
塔筒系统(含塔筒、螺栓)作为风电机组正常运行的重要基础部件,对影响其安全的裂痕等故障有效识别至关重要。针对裂痕的表征不明显、低辨识度、对比度差等情况,本文提出了基于YOLO系列算法改进的YOLOv7-SEAttention算法模型,并与FasterSR-CNN, RFCN, SSD, YOLOv5, YOLOv7等多种算法模型进行对比,通过查全率(Recall),查准率(Precision),平均精度(Average Precision)三个指标进行综合评价。结果表明,改进后的YOLOv7-SEAttention模型在塔筒系统的表面裂痕检测上表现出显著的优越性,相对于原始YOLOv7以及其他算法模型在风机塔筒系统的裂痕检测方面具有更高的精度和可靠性,在塔筒裂痕检测方面提高了2.6%的平均精度(AP),达到83.7%,在螺栓裂痕检测方面提高了4%平均精度,达到84.3%。本文改进的模型能够精准高效检测塔筒系统表面裂痕,降低运维成本、提升风电场的效益。  相似文献   

16.
为了更准确地检测高速公路隧道内停车行为,提出一种基于改进YOLOv3车辆检测模型的高速公路隧道内停车检测方法。通过筛选VOC数据集以及实际高速公路隧道内的车辆图片制作专门用于高速公路隧道内车辆检测的数据集,选取YOLOv3目标检测模型作为车辆检测的基础网络结构,并对其进行加深网络结构的改进使其能够准确检测隧道内的车辆。将Deep SORT跟踪算法应用于改进的停车检测模型中,对车辆进行跟踪从而计算行驶速度,并创新性地设置双重速度阈值来判别车辆的停车行为。实验结果表明,经过改进的YOLOv3模型相比于原模型,在VOC-vehicle数据集和Tunnel-vehicle数据集上的mAP都有所提升,最终获得了mAP为98.19%的高速公路隧道车辆检测模型。将基于改进YOLOv3的高速公路隧道内停车检测方法在高速公路隧道视频上进行测试,可以有效地在高速公路隧道中完成停车检测的任务。  相似文献   

17.
对图像或视频数据中的车辆进行检测是城市交通监控中非常重要并且具有挑战性的任务。该任务的难度在于对复杂场景中相对较小的车辆进行精准地定位和分类。针对这些问题,提出了一个单阶段的深度神经网络(DF-YOLOv3),实现城市交通监控中不同类型车辆的实时检测。DF-YOLOv3对传统的YOLOv3算法进行改进,首先增强深度残差网络提取车辆特征,然后设计6个不同尺度的卷积特征图,并与残差网络中相应尺度的特征图进行融合,形成最终的特征金字塔执行车辆预测任务。在KITTI数据集上的实验表明,提出的DF-YOLOv3方法在精度和速度上均能获得较高的检测性能。具体地,对于512×512分辨率的输入模型,基于英伟达1080Ti GPU,DF-YOLOv3获得93.61%的mAP(均值平均精度),速度达到45.48 f/s(每秒传输帧数)。特别地,对于精度,DF-YOLOv3比Fast R-CNN、Faster R-CNN、DAVE、YOLO、SSD、YOLOv2、YOLOv3与SINet表现更好。  相似文献   

18.
基于相似中心的k-cmeans文本聚类算法   总被引:3,自引:0,他引:3  
针对k-means聚类算法只能保证收敛到局部最优,导致聚类结果对初始聚类中心敏感的问题,提出了一种基于相似中心的文本聚类算法.首先,度量文档之间的相似性,然后按照文档之间的相似性递减排序,选择序列最前面的k个文档作为初始聚类中心,对于每个剩余的文档(没有被选为初始簇中心的文档)根据其与存在的簇中心的相似性,将其分配到相似性最大的簇中,更新簇均值,连续迭代,直至均值不变,从而得到更加稳定的聚类结果.实验结果表明,提出的算法在宏平均聚类精度和宏平均召回率上有显著提高,产生了质量较好的聚类效果.  相似文献   

19.
交通场景下的车辆检测问题存在小目标多、目标遮挡严重等情况,鉴于此,提出一种基于改进YOLOv3的车辆检测算法.由于小目标仅包含较少的像素,特征不明显,算法在空间金字塔结构中融入软池化操作,搭建Soft-SPP结构将多重感受野融合,通过软池化操作最大程度地保留细节,有效提取小目标特征;引入坐标注意力机制,在调整每个通道特征分配权重的同时能够捕捉具有精确位置信息的远程依赖关系;提出一种新的损失函数KIoU Loss作为边界框损失函数,同时考虑边界框的关键点与长宽比使之回归更加准确.实验结果表明,改进后的算法在自动驾驶KITTI数据集上平均精度达到94.69%,相比原始YOLOv3算法精度提升4.13%,且检测速度仅下降3.16 frame·s-1,在保持检测速度的情况下能够明显提升检测精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号