首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为提高短期风速的预测精度,提出一种基于双模式分解、双通道卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的组合预测模型以提高预测精度。首先,对经过PAM方法聚类后的风速时间序列利用奇异谱分解(SSD)和变分模态分解(VMD)2种信号分解方法进行分解,获得2类多尺度分量。不同模式的多尺度分量可降低原始风速的复杂度和非平稳性,实现不同模式模态分量规律的互补;其次,将2种分解方法得到的风速子序列合并为一个矩阵,输入到双通道CNN进行波形特征深度提取;最后,采用LSTM建立历史风速时序的时间依赖关系,在时空相关性分析的基础上得到最终风速预测结果。实验结果表明,基于双模式分解-双通道CNN-LSTM的组合预测模型可有效提高风速短期预测的精度。  相似文献   

2.
针对风速时间序列不稳定导致其难以准确预测的问题,提出一种基于最优变分模态分解(OVMD)和蝙蝠算法(BA)优化最小二乘支持向量机(LSSVM)的短期风速预测模型。采用OVMD技术,将原始风速时间序列先分解为若干个相对稳定的分量序列,然后对各个分量分别建立LSSVM模型进行预测,并采用蝙蝠算法优化LSSVM中的参数,最后对优化的分量预测模型的预测值求和,即得到原始风速序列的预测值。算例分析表明,该模型具有较高的预测精度,能有效跟踪风速的变化规律。研究成果为短期风速预测提供了新思路。  相似文献   

3.
预测风网的发电量,合理调整机组维护人员活动,增加企业利润,稳定全网电力平衡,保障电网安全平稳运行.针对风电的不平稳性和波动性,本文基于EEMD分解的方法,建立了EEMD-GRU组合模型,并与其他单模型和组合模型进行对比,验证了该模型能有效地提高预测精度.  相似文献   

4.
随着风能在电力系统运行中的重要性不断加强,准确可靠的风速预测可以有效提高电网运行的稳定性,提高电网经济效益.提出了一种分解去噪、智能算法优化LSSVM的短期风速混合预测模型,首先对初始风速数据进行变分模态分解(VMD),然后利用样本熵(SE)评估各子序列的复杂程度,采用奇异谱分析(SSA)对最无序子序列进行降噪处理;一...  相似文献   

5.
风速预测在风电场安全并网和智能化管理中起着决定性作用,针对风速的非线性和不稳定等特点,提出了一种基于变分模态分解(VMD)和改进鲸鱼算法优化的模糊神经网络(VMD-CGWOA-ANFIS)的混合预测模型。该模型首先使用变分模态分解技术将原始风速序列分解为一系列子序列,而后对各子序列分别采用模糊神经网络(ANFIS)建立预测模型。为进一步提高预测精度,同时克服鲸鱼(WOA)算法容易陷入局部最优和收敛过早的缺点,引入共轭梯度算法(CG)对WOA进行改进,利用改进的CGWOA算法对ANFIS参数进行优化。使用优化后的ANFIS分别对变分模态分解后的各子序列进行预测,最后将预测后的各子序列叠加得到最终预测结果。为测试模型的有效性,选择宁夏地区3组实际风电数据进行模拟试验,将ANFIS,VMD-ANFIS,VMD-WOA-ANFIS与提出模型进行对比,结果表明所提出的混合模型预测精度明显高于其他对比模型。  相似文献   

6.
针对智能电网建设环境下用电数据所呈现出的采集频率低、时变性显著等特点,提出了一种基于时间卷积网络和门控循环单元的短期用电量预测方法.考虑电类特征、环境特征和时间特征,从常见用户用电量的影响因素中筛选出模型的输入数据,分别训练时间卷积网络和门控循环单元两种深度学习模型并建立所提方法的整体架构.对某地区低采集频率用电数据进...  相似文献   

7.
风速预测在风电场安全并网和智能化管理中起着决定性作用,针对风速的非线性和不稳定等特点,提出了一种基于变分模态分解(VMD)和改进鲸鱼算法优化的模糊神经网络(VMD-CGWOA-ANFIS)的混合预测模型。该模型首先使用变分模态分解技术将原始风速序列分解为一系列子序列,而后对各子序列分别采用模糊神经网络(ANFIS)建立预测模型。为进一步提高预测精度,同时克服鲸鱼(WOA)算法容易陷入局部最优和收敛过早的缺点,引入共轭梯度算法(CG)对WOA进行改进,利用改进的CGWOA算法对ANFIS参数进行优化。使用优化后的ANFIS分别对变分模态分解后的各子序列进行预测,最后将预测后的各子序列叠加得到最终预测结果。为测试模型的有效性,选择宁夏地区3组实际风电数据进行模拟试验,将ANFIS,VMD-ANFIS,VMD-WOA-ANFIS与提出模型进行对比,结果表明所提出的混合模型预测精度明显高于其他对比模型。  相似文献   

8.
9.
针对光伏发电量数据的非平稳性造成的发电量预测性能问题,提出一种基于改进变分模态分解和集成学习的光伏发电量预测方法。采用改进变分模态分解方法分解光伏发电量数据获得发电量分量,通过集成学习方法构建发电量分量预测模型;将发电量分量预测值进行组合,获得最终发电量预测结果。实验结果表明,所提方法在公开数据集上对光伏发电量进行预测的均方误差、平均绝对误差、决定系数值分别为0.223 2,0.338 7,0.979 7,与其他方法相比具有更高的预测准确率和更小的误差。  相似文献   

10.
准确的秒级风速实时预测能够提高风电机组的运行状况和控制品质,为电网做出最优调度决策提供辅助信息.目前风速实时预测时间分辨率通常为分钟级,且在小数据集的情况下模型泛化能力弱.文章以时间分辨率为5s的风速序列为研究对象,提出了基于多任务学习的风速实时预测方法.该方法结合了变分模态分解方法和长短期记忆神经网络.首先,通过变分...  相似文献   

11.
鉴于有效预测振动信号可为抽水蓄能机组的性能劣化及故障等预警提供重要依据的问题,提出一种基于变分模态分解(VMD)与门控循环单元神经网络(GRU)的抽水蓄能机组振动信号预测方法。首先,对原始的振动信号进行VMD分解,得到一组相对平稳且频率不同的本征模态函数(IMF),以减少不同频率信息间的相互影响;然后,针对各子序列分别构建GRU时序预测模型,并采用自适应矩估计算法(Adam)对各分量GRU预测模型进行优化;最后叠加各子序列预测结果得到抽蓄机组振动信号的预测值,并构建ANN、GRU、VMD-SVM、VMD-ANN 4种预测模型进行对比。试验结果表明,与所构建的4种预测模型相比,VMD-GRU预测模型在有效性及预测精度等方面效果显著,在实际工程中非常具有应用意义。  相似文献   

12.
风速具有较大的随机波动性,影响了电网的稳定性,风速预测对于风电并网问题至关重要。本研究采用灰色-马尔可夫链(GM-Markov)与最小二乘支持向量机(LSSVM)预测模型分别对风速进行预测,比较了各单一预测模型的精度;在此基础上研究了动态权重组合模型与0-1法组合预测模型。然后以国内某风电场的实测风速数据为例进行分析,结果表明,单一预测方法时好时坏,稳定性较差,组合预测模型总体效果较好,具有较大的实用价值。  相似文献   

13.
风速具有较大的随机波动性,影响电网的稳定性,良好的风速预测是解决风电并网问题的关键。为了提高风速预测的精确性,首先对风速数据进行相似性样本的提取,采用分段线性化的搜索方法,求出各小段风速的斜率与长度所占的比重,继而找出相似性距离最小的曲线簇。并以此作为训练样本,采用最小二乘支持向量机(LSSVM)模型对风速进行预测。预测结果表明,采用风速的相似曲线簇进行LSSVM模型训练所得的风速和风电功率预测结果更优。  相似文献   

14.
针对风速时间序列复杂的非线性特征,根据C-C算法确定重构参数(嵌入维数及延迟时间)并对风速重构相空间,建立径向基函数神经网络(RBF网络)及Volterra自适应预测模型对风速时间序列进行预测,以Lorenz方程数值解为例验证了两种预测方法的可行性。结果表明:RBF神经网络模型和Volterra自适应预测模型都能对实测风速时间序列进行较为准确的预测,预测误差分别在0.3和0.1 m/s内;Volterra自适应预测模型预测结果总体较RBF神经网络模型预测精度更高,且随着预测时间的增大,预测误差呈增大趋势,这与混沌存在初值敏感性的特征相符。  相似文献   

15.
基于时间序列模型的风电场风速预测研究   总被引:1,自引:0,他引:1  
基于时间序列的方法,对风速的长期预测进行了研究,并在工程应用的基础上提出了新的预测思路:首先将风速信号分解成趋势信号和去趋势项随机信号,然后分别用滑动滤波和小波分析这2种方法对分解出的去趋势项随机信号进行数据处理并比较,再用时间序列的方法对趋势项信号和处理后的信号分别进行预测并叠加,得到最后的预测风速信号.结果表明:五项滑动滤波处理数据的方法与Daubechies小波分解法均能实现精度较高的风速长期预测;与小波分解法相比,滑动滤波方法算法的复杂性低,在工程应用上可行性更高.  相似文献   

16.
风电场风速及风电功率预测方法研究综述   总被引:4,自引:1,他引:4  
由于风能的随机性以及电力系统的非线性等原因,预测风电功率时需要考虑众多的不确定因素影响。现有预测方法主要包括物理预测方法、统计预测方法以及学习预测方法、综合预测法等。基于数字天气预报(NWP-numerical weather prediction)的物理预测方法模型复杂、计算量大,较少用于短期预测;统计预测方法模型简单,数据需求量少,较适合于数据获取有一定困难的情况;人工智能预测方法不依赖于对象的精确模型,适合于随机非线性系统;综合预测方法可一定程度地扬长避短。本文主要就风电场风速及风电功率预测方法研究进行了综合阐述,并在总结前人研究的基础上提出了一些可进一步研究的问题。  相似文献   

17.
基于ARMA模型的风电场风速短期预测   总被引:3,自引:1,他引:3  
通过分析达坂城风电场风速数据并建立ARMA模型,基于时间序列分析法实现了提前1h风速预测,分析预测结果证明预测时间和风速震荡性是影响风速预测精度的主要因素,为更长时间的风速预测提供理论基础。  相似文献   

18.
由于风速信号是非线性、非稳定性的动态信号,用传统预测方法难以达到满意效果。为提高预测精度,提出了基于经验模态分解与多步预测的最小二乘支持向量机相结合的方法,对风速时间序列进行建模预测,即首先对风速动态信号进行经验模式分解,将原信号分解为若干个不同特征尺度(频率)的本征模态函数,然后对不同频带的平稳IMF分量分别建立多步预测的最小二乘支持向量机模型,将各分量的预测值等权求和得到最终预测值。实例分析结果表明,与单一的最小二乘支持向量机预测方法相比,经验模态分解与多步预测的最小二乘支持向量机相结合的风速预测方法误差小,可应用于风速预测中。  相似文献   

19.
介绍了基于AdaBoost的多神经网络集成预测方法。集成方法的预测结果优于其他方法的预测结果,这一点在理论上和经验上已经得到证明。AdaBoost是适用于时间序列预测的集成方法。基于AdaBoost算法,采用多个BP神经网络训练随机生成的风速样本,再由多个训练结果生成最终的风速预测值。用该方法预测的误差低于用单一BP神经网络进行的预测,其分析和仿真结果表明了其优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号