首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为了提高NMF方法在方差差异明显的多模态过程中的监视效果,提出一种基于LPD-NMF的多模态过程监视方法.对多模态过程训练数据运用局部概率密度(LPD)进行预处理,消除方差差异明显的多模态特性.运用非负矩阵分解算法进行降维和局部特征提取,计算每个低维样本与其k个近邻欧氏距离的平方和,使用核密度估计(KDE)算法来确定控制限进行多模态过程监视.将该方法应用于数值例子和半导体数据,结果表明,其过程监视结果优于常规kNN、WkNN和LPD-kNN方法.  相似文献   

2.
为了提高故障检测和分类能力,提出基于概率密度PCA的多模态过程故障检测算法。对各模态的训练数据建立PCA模型,计算各个模型的控制限和匹配系数。根据匹配系数计算各模态统一的控制限。对新来的数据,运用概率密度确定其模态。新来数据向对应模态的模型上投影并计算统一的统计量,比较统计量与控制限进行多模态过程故障检测。把该方法应用到数值例子和半导体过程中,仿真结果表明,该算法在分类及多模态过程故障检测方面具有很高的准确性。  相似文献   

3.
顾幸生  周冰倩 《控制与决策》2020,35(8):1879-1886
受市场需求主导,工业过程需要在多种工作模态下切换,数据往往呈现多模态复杂分布特性,研究多模态的故障检测技术对于保障工业过程的安全运行具有重要意义.为此,提出一种基于局部近邻标准化(LNS)和方向熵加权核熵成分分析(DEWKECA)的故障检测算法.利用LNS实现多模态数据的标准化,相比于全局标准化,LNS可以有效消除多模态特性;考虑到故障样本与正常样本在变化趋势上的差异,定义样本变化方向的信息熵为方向熵,用来衡量样本变化方向的无序程度,从而利用DEWKECA实现数据降维,可以更有效提取数据变化方向特征;考虑到多模态数据往往服从非高斯分布,采用局部离群因子(LOF)算法建立监控统计量,根据核密度估计确定其控制限.最后,通过数值例子及TE过程仿真验证所提出算法的有效性.  相似文献   

4.
本文针对多模态间歇过程数据多中心和模态方差差异明显的问题,提出了一种基于局部近邻标准化偏最小二乘方法.首先,采用统计模量方法处理间歇过程数据,再利用局部近邻标准化方法将统计模量后的训练数据进行高斯化处理,建立偏最小二乘监控模型,确定控制限;然后,同样对统计模量后的测试数据进行局部近邻标准化处理,再计算测试数据的高斯偏最小二乘监控指标,进行过程监视及故障检测.最后,通过数值实例和青霉素发酵过程验证方法有效性.实验结果表明所提方法解决了故障样本近邻集跨模态问题,对多模态数据具有更好的故障检测能力.  相似文献   

5.
根据多模态工业生产过程的数据特点,提出基于时空近邻标准化和鲁棒自编码器(TSNS-RAE)的故障检测方法;TSNS处理数据时同时考虑了样本的时间近邻和空间近邻,可以消除数据动态性和多模态特征;相比于普通的自编码器,鲁棒自编码器提升了模型的抗噪性和鲁棒性,具有更好的提取非线性特征的能力;TSNS-RAE模型将原始数据空间分成模型空间和残差空间两部分,选择残差空间的SPE统计量作为监控统计量,通过数值案例和青霉素实验来验证TSNS-RAE的可行性。  相似文献   

6.
针对工业过程数据存在的非高斯和多模态特性,提出一种基于统计差分LPP的多模态间歇过程故障检测方法。首先将统计模量分析的方法应用到间歇过程训练数据集中,计算统计过程变量的均值和方差,将不等长的批次变成等长的统计量,保证统计模量近似服从高斯分布;然后运用差分算法使多模态变为单模态,最后运用LPP算法进行降维和特征提取,计算样本的T2统计量,并利用核密度估计确定控制限。对于新来的测试样本数据统计差分处理后,向LPP模型上进行投影,计算新数据的T2统计量并与控制限比较进行故障检测。最后通过半导体过程数据的仿真结果表明,该算法的故障检测效果最好,验证了所提方法的有效性。  相似文献   

7.
李元  吴昊俣  张成  冯立伟 《计算机应用》2018,38(12):3601-3606
针对传统的数据驱动方法偏最小二乘法(PLS)中存在的多模态数据故障检测效果不佳的问题,提出了一种新的故障检测方法——基于局部近邻标准化(LNS)的PLS(LNS-PLS)。首先,利用LNS方法对原始数据进行高斯化处理,在此基础上建立PLS的监控模型,确定T2和平方预测误差(SPE)的控制限;其次,对测试数据同样进行LNS标准化处理,再计算出测试数据的PLS监控指标来进行过程监视及故障检测,解决了PLS中无法处理多模态的问题。将所提方法应用于数值例子和青霉素生产过程,并将其测试结果与主成分分析(PCA)、K最近邻(KNN)、PLS等方法进行对比分析。实验结果表明,所提方法的故障检测效果优于PLS、KNN、PCA,该方法在分类及多模态过程故障检测方面有较高的准确性。  相似文献   

8.
多模态复杂过程的多变量、多工序、变量时变性以及模态转换时间不确定等多种原因, 导致面向多模态生产过程的监测问题十分复杂. 对此, 基于高斯混合模型的监测方法, 结合定性知识和定量知识, 解决了多模态过程监测中离线数据模态划分、稳定模态和过渡模态的监测模型建立以及在线数据的模态识别等关键问题, 最终实现了对多模态过程的监测.  相似文献   

9.
针对目前弹性图像配准方法较难应用于多模态图像的问题,提出了一种转化图像模态的解决方案。计算图像中每个灰度值在另一幅图像中对应像素的灰度均值,使用该均值代替原图像中对应的像素值,两幅图像灰度被转换为基本一致的状态,使用局部仿射模型配准图像。将灰度转换后的图像与目标图像配准,再将图像的形变参数映射到浮动图像中就可以实现多模态的图像配准。实验结果表明该方法可将局部仿射模型成功地用于多模态图像配准。  相似文献   

10.
谭帅  王福利  彭俊  石怀涛 《控制与决策》2012,27(8):1241-1245
多模态过程中新出现的模态过程短期内无法获得充足的建模数据,且传统统计控制方法无法有效地估计过程特性.鉴于此,提出一种基于历史模型数据相关特性建立初步模型的方法,充分利用已有多模态历史数据的相关特性,从历史数据中寻找与当前数据特征相似的数据进行补充,建立初始模型,并利用新积累的数据迭代初步模型,逐步实现准确描述过程特性的算法.通过在田纳西-伊斯曼过程中的大量仿真,表明了所提出方法的可行性和有效性.  相似文献   

11.
基于局部熵的CMOS摄像头疵点检测   总被引:1,自引:0,他引:1       下载免费PDF全文
在CMOS摄像头数字图像性能检测系统中,疵点检测是关键内容。基于局部熵,提出了基于局部熵的CMOS摄像头疵点检测方法。与原有的摄像头疵点检测方法进行比较,局部熵方法是一种自适应的疵点检测方法。实验结果表明,该方法能够准确、有效地检测到摄像头的疵点。  相似文献   

12.
13.
信息熵保证原始空间特征最大确定性的概率分布,且能够处理缺失值、噪声等问题;流形学习方法局部线性嵌入能够在降维后的子空间中较完整地表现原空间流形结构中特征间的关系。结合两者优势,提出一种新的特征选择方法,基于信息熵的局部线性嵌入,先对原始空间的特征信息熵进行估计,然后用局部线性嵌入对保有最大信息量的特征子空间降维,最后获得较低维度的特征子空间。在给定的UCI标准数据集中,实验结果表明了该方法在特征选择中的可行性及有效性。  相似文献   

14.
互信息是一种常用的衡量变量相关性的方法,但在互信息估计过程中,联合概率密度的估计往往十分困难.为了避免联合概率密度的估计,同时有效提高互信息估计的准确度与效率,本文提出一种基于Copula熵的互信息估计方法.利用Copula熵与互信息之间的关系,将互信息的估计转化为对Copula熵值的估计.采用基于Kendall秩相关系数的参数估计方法对Copula函数的参数进行估计.所提算法分别与直方图法、核方法、κ近邻法和极大似然法进行比较.二维高斯数据上的仿真结果表明,所提方法能够快速准确地对互信息值进行估计.  相似文献   

15.
黎蔚  赵煜  陈家新  胡明合 《计算机应用》2011,31(6):1613-1616
针对造成低对比度环境下运动人体检测困难的两个主要因素:拍摄时光线昏暗和拍摄时距离较远,引入局部灰度熵概念,根据局部灰度熵可以准确地反映样本的离散程度且与样本的灰度均值无关这一原理,提出基于局部灰度熵的人体目标检测算法。建立背景模型,运用泰勒展开式简化局部灰度熵计算公式,计算邻域窗口内运动物体与背景模型的局部灰度熵值之差,通过检测率与虚警率对算法进行的评价, 得到两种低对比度情况下可以获取运动人体目标的局部灰度熵差值的最佳阈值。实验结果表明,在低对比度环境下,基于局部灰度熵的人体检测算法能够有效地检测出运动人体目标。  相似文献   

16.
针对基于数据的涡轴发动机故障检测算法的分类性能较差、鲁棒性不强的问题,提出一种改进的加权一类支持向量机(WOCSVM)算法——基于局部密度的WOCSVM (LD-WOCSVM)算法。首先,对于每个训练样本,选取以该样本为中心,以全体训练样本中心到距离最远样本之间马氏距离的百分之二为半径的球体内所包含的k个近邻样本;其次,以该样本到选定的k个训练样本的中心的距离大小来评估该样本为故障样本的可能性,并以此为依据,使用经过归一化的距离来计算对应样本的权重。针对目前算法不能很好地反映样本分布特点的问题,提出了一种基于快速聚类的权重计算方法并将其命名为FCLD-WOCSVM。该算法通过求取每个训练样本的局部密度和该样本到高局部密度的距离两个参数,来确定该样本的分布位置,并利用求得的两个参数来计算该样本的权重。两种算法都是通过对可能的故障样本分配较小的权重来增强算法的分类性能。为了验证算法的有效性,分别在4个UCI数据集和T700涡轴发动机上进行仿真实验。实验结果表明,与自适应WOCSVM (A-WOCSVM)算法相比,LD-WOCSVM算法在AUC值上提高了0.5%,FCLD-WOCSVM算法在G-mean上提高了12.1%,两种算法可以作为涡轴发动机故障检测候选算法。  相似文献   

17.
一种基于最大类间后验概率的Canny边缘检测算法   总被引:8,自引:0,他引:8  
在分析了传统的Canny算法的基础上,用自适应滤波器代替原有的高斯滤波器,并利用交叉熵来度量目标和背景间的差异,结合贝叶斯判断理论,将这种类间差异性用原始图像中的像素点判决到目标和背景两类区域的后验概率之间的交叉熵的平均值来表示,通过最大化将像素点判决到不同区域的后验概率来获取最优的高低阈值。实验证明改进的算法具有很好的边缘检测效果。  相似文献   

18.
基于近似决策熵的属性约简   总被引:3,自引:0,他引:3  
粗糙集理论已被证明是一种有效的属性约简方法. 目前有许多启发式属性约简算法已被提出, 其中基于信息熵的属性约简算法受到了广泛的关注. 为此, 针对现有的基于信息熵的属性约简算法问题, 定义一种新的信息熵模型—–近似决策熵, 并提出一种基于近似决策熵的属性约简(ADEAR) 算法. 通过在多个UCI 数据集上的实验表明, 与现有算法相比, ADEAR算法能够获得较小的约简和较高的分类精度, 具有相对较低的计算开销.  相似文献   

19.
The negation of probability distribution becomes an important topic since some problems are burdensome to deal with directly. Inspired by Yager's negation of probability distribution, an extension model to measure the negation of a probability distribution is proposed using the idea of a nonextensive statistic based on Tsallis entropy. Proofs show that the proposed extension of negation of probability distribution converges to the maximum Tsallis entropy. The proposed model may extend Yager's method to consider the influences of the correlations in a system, which gives the different convergent routes. Some numerical simulation results are used to illustrate the effectiveness of the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号