首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transmission performance of optical labeling based on a combined frequency shift keying/amplitude shift keying (FSK/ASK) format is studied by numerical simulation. The simulation demonstrates that the bit‐error ratio (BER) characteristic of an ASK signal is limited by the extinction ratio, received optical power, and dispersion, simultaneously. However, an FSK signal is mainly limited by the extinction ratio (ER) and received optical power when the peak spectrum, which is used to detect the FSK signal, is relatively narrow.  相似文献   

2.
Hybrid diversity systems have been of great importance because they provide better diversity orders and robustness to the fading effects of wireless communication systems. This paper focuses on the performance analysis of multiple‐input gle‐output systems that employ combined transmit antenna selection (TAS)/maximal‐ratio transmission (MRT) techniques (i.e., hybrid TAS/MRT). The probability density function, the moment generating function and the n th order moments of the output signal‐to‐noise ratio of the investigated diversity scheme are derived for independent identically distributed flat Nakagami‐m fading channels. The system capacity of the hybrid TAS/MRT scheme is examined from the outage probability perspective. Exact bit/symbol error rate (BER/SER) expressions for binary frequency shift keying, M‐ary phase shift keying and square M‐ary quadrature amplitude modulation signals are derived by using the moment generating function‐based analysis method. By deriving the upper bounds for BER/SER expressions, it is also shown that the investigated systems achieve full diversity orders at high signal‐to‐noise ratios. Also, by Monte Carlo simulations, analytical performance results are validated and the effect of feedback delay, channel estimation error and feedback quantization error on BER/SER performances are examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
We propose a new optical code division multiple access (OCDMA) scheme for reducing multiple access interference (MAI) and enhancing performance for optical subscriber access networks using modified pseudorandom noise (PN)‐coded fiber Bragg gratings with bipolar OCDMA decoders. Through the bipolar OCDMA decoder and the modified PN codes, MAI among users is effectively depressed. As the data are encoded either by a unipolar signature sequence of the modified PN code or its complement according to whether the data bit is 1 or 0, the bit error ratio (BER) can be more improved with the same signal to interference plus noise ratio over the conventional on‐off shift keying‐based OCDMA system. We prove by numerical analysis that the BER of the proposed bipolar OCDMA system is better than the conventional unipolar OCDMA system. We also analyze the spectral power distortion effects of the broadband light source.  相似文献   

4.
This paper proposes an adaptive transmission modulation (ATM) technique for free‐space optical (FSO) links over gamma‐gamma turbulence channels.The ATM technique provides efficient utilization of the FSO channel capacity for improving spectral efficiency, by adapting the order of the phase‐shift keying modulation scheme, according to the channel conditions and the required bit error rate (BER). To overcome the channel degradation resulting from the turbulence effects as well as the pointing errors (PEs), single‐input multiple‐output (SIMO) system with maximal ratio combining (MRC) is proposed. Exact closed‐form expressions of BER and upper bound of the capacity are derived and verified by Monte Carlo simulations. The numerical results show that the proposed adaptive technique improves the spectral efficiency (SE) five times higher than the nonadaptive technique at the same BER threshold (10?3).This improvement is achieved at signal‐to‐noise ratio (SNR) equals 27 and 42  dB in the case of atmospheric turbulence without and with PE, respectively. Furthermore, this SE could be obtained while the SNR = 30  dB by using ( 1 × 4 ) SIMO scheme with MRC and PE and having the same transmitting optical power.  相似文献   

5.
提出了一种基于极化码的无线光信道副载波调制方法,给出了极化编译码的具体算法过程,并将其应用于无线光通信系统。在不同大气湍流强度下,对系统的差错性能进行了仿真分析,其重对基于极化码的二相相移键控和四相相移键控两种调制方法的误码率进行了对比,结果表明,采用极化码的副载波二相相移键控调制系统的性能优于四相相移键控系统。最后,实验比较分析了极化编码前后副载波调制系统的误比特率,结果表明,在无线光通信大气湍流信道模型下,采用副载波极化码编码调制技术可使误码率性能改善一个量级。  相似文献   

6.
This paper investigates the design of power and spectrally efficient coded modulations based on amplitude phase shift keying (APSK) modulation with application to satellite broadband communications. APSK represents an attractive modulation format for digital transmission over nonlinear satellite channels due to its power and spectral efficiency combined with its inherent robustness against nonlinear distortion. For these reasons APSK has been very recently introduced in the new standard for satellite Digital Video Broadcasting named DVB‐S2. Assuming an ideal rectangular transmission pulse, for which no nonlinear inter‐symbol interference is present and perfect pre‐compensation of the nonlinearity, we optimize the APSK constellation. In addition to the minimum distance criterion, we introduce a new optimization based on the mutual information; this new method generates an optimum constellation for each spectral efficiency. To achieve power efficiency jointly with low bit error rate (BER) floor we adopt a powerful binary serially concatenated turbo‐code coupled with optimal APSK modulations through bit‐interleaved coded modulation. We derive tight approximations on the maximum‐likelihood decoding error probability, and results are compared with computer simulations. The proposed coded modulation scheme is shown to provide a considerable performance advantage compared to current standards for satellite multimedia and broadcasting systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A novel analytical representation of bit error rate (BER) performance of an impulse‐radio ultra‐wideband energy detector on–off keying system using cooperative dual‐hop amplify and forward relay technology, with various diversity combining schemes over IEEE 802.15.4a environment is presented in this paper. In particular, the approximate expressions based on energy detection principle are derived for various diversity combining cases, namely linear optimal combining, linear combining, and selective combining. Simulation results depict an improvement in BER performance, with increase in number of relay paths (L ) and decrease in number of frames per symbol (N f ). Furthermore, the BER performance of the impulse‐radio ultra‐wideband energy detector on–off keying system improves substantially using dual‐hop cooperative amplify and forward scheme, compared with that of non‐cooperative or single link scenario. Among the diversity combining schemes, linear optimal diversity combining performs better when compared with linear diversity combining and selective combining. The analytical BER expressions are validated with the simulation results, which confirm the accuracy and precision in approximation used in the investigation of BER. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this letter, we study the influence of receiver imperfections on bit error rate (BER) degradations in detecting low‐density parity‐check coded multilevel phase‐shift keying signals transmitted over a Rician fading channel. Based on the analytical system model which we previously developed using Monte Carlo simulations, we determine the BER degradations caused by the simultaneous influences of stochastic phase error, quadrature error, in‐phase‐quadrature mismatch, and the fading severity.  相似文献   

9.
This paper has deeply investigated the performance signature of modulation techniques based low earth orbit (LEO)/medium earth orbit (MEO) intersatellite optical wireless communication systems for possible communication coverage distance of 20 000 km with possible transmission bit rate of 0.5 Tb/s. These modulation techniques that are namely multilevel quadrature amplitude modulation (M‐QAM), multilevel phase shift keying (N‐PSK), multilevel pulse amplitude modulation (H‐PAM), and finally multilevel differential phase shift keying (L‐DPSK) based on different electrical pulse generators for upgrading LEO/MEO intersatellite link operation efficiency. These pulse generators that are namely Gaussian pulse generator (GPG), hyperbolic secant pulse generator (HSPG), and raised cosine pulse generator (RCPG). The variations of maximum Q‐factor, minimum bit error rate (BER), and optical signal‐to‐noise ratio in relation to number of bits/symbol for different modulation techniques can be deeply studied in the presence of vertical cavity surface emitting laser (VCSEL). This study is done with using Optiwave system simulation version 7 for different modulation techniques, and all figures are sketched with using wizard Excel sheet set up. It is observed that maximum Q‐factor and minimum BER are optimized with using GPG and 8‐PAM, as well as 4‐DPSK with both HSPG and RCPG.  相似文献   

10.
This paper proposes two bandwidth and power efficient multicode multicarrier spread spectrum (MCSS) system modes based on a new cyclic shift orthogonal keying (CSOK) scheme that leads to low peak‐to‐average power ratio (PAPR) signals. Both system modes can improve the bandwidth efficiency by loading more data bits per symbol block. The first system mode is the hybrid CSOK (HCSOK) mode, which combines phase shift keying (PSK) or quadrature amplitude modulation (QAM) modulation symbol with the CSOK symbol, for example, the important hybrid quadrature PSK (QPSK)–CSOK case. The second is the quadrature CSOK (QCSOK) mode that transmits two parallel binary phase shift keying (BPSK)–CSOK branches at the same time. For both modes, maximum likelihood receivers are derived and simplified, leading to efficient fast Fourier transform‐based structures for maximum ratio combining and cyclic‐code correlation. Theoretical bit error rate (BER) analysis is conducted for the hybrid QPSK–CSOK case. Simulation results demonstrate that both the two system modes considerably outperforms the traditional Walsh‐coded MCSS system in terms of bandwidth efficiency, PAPR, BER, and antijamming capability. Furthermore, in indoor channel, QCSOK performs slightly worse than QPSK–CSOK, but it has almost twice the data rate when the code length is large. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
为了研究信道编码技术对无线光通信副载波系统差错性能的影响,基于无线光通信链路噪声特性,建立了大气信道等效数学模型。采用低密度奇偶校验(LDPC)码作为信道编码方式引入无线光通信,在不同光强闪烁指数下对基于副载波相移键控调制无线光通信系统进行了差错性能仿真,比较分析了LDPC编码前后副载波调制系统的误比特率,并对二相相移键控及四相相移键控两种系统进行了对比。结果表明,副载波二相相移键控调制系统的差错性能优于四相相移键控系统,同时LDPC码在弱湍流信道具有优越的纠错能力,可以获得比未编码系统较高的编码增益,在无线光通信领域具有一定的应用价值。  相似文献   

12.
This paper introduces limited feedback technique into physical‐layer network coding (PLNC) scheme, which is the most spectrally efficient protocol in two‐way relay channels, consisted of one relay and two end nodes (sources). Decode‐and‐forward (DF) and partial‐decode‐and‐forward (PDF) strategies are considered for PLNC, and all nodes are assumed to have two antennas to allow transmission by Alamouti's orthogonal space–time block code to provide diversity. In DF, by limited feedback, one of the sources is informed about instantaneous channel state information (CSI) to increase the bit error rate (BER) performance at relay. The closed‐form upper and lower bounds on the bit error probability are derived for binary phase‐shift keying (BPSK) and quadrature PSK (QPSK) modulations and approved via computer simulations. In PDF strategy, each source has to know CSI between relay and the other source for decoding, which causes extra protocol complexity. Moreover, for the system in which all nodes have two antennas, classical PDF strategy does not satisfy orthogonality at the end nodes. Therefore, in this paper, a modified‐PDF (MPDF) strategy with limited feedback is proposed. In MPDF, for decoding at the end nodes, differential phase information between channel fading coefficients having maximum amplitudes is fed back to the sources by relay. This approach enables single‐symbol decoding, besides full diversity, and sources do not need to know CSI between relay and the other source. It is shown via computer simulations that MPDF strategy provides significantly better BER performance than the classical PDF for BPSK and QPSK modulations.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.

Inter-satellite optical wireless communication (IsOWC) is a developing free-space optical technology used to communicate among satellites in space. At the same time, SAC-OCDMA (spectral amplitude coding optical code division multiple access) is an encouraging research area in the domain of optical communication because of its high bandwidth, speed, huge capacity, and ability to carry bursty and asynchronous information transmission. The present paper is concerned with the hybrid IsOWC non-coherent SAC-OCDMA system based on PM-ZCC (Permutation Matrix Zero Cross-Correlation) code for long-range high data rate transmission. The advanced modulation format (CSRZ) and direct detection (DD) techniques have been used to design the proposed system. The system is designed for five stations (each carrying 10 Gb/s). The system's performance is investigated for pointing error (with and without) over a space distance up to 12000 km in terms of Q factor, eye diagrams, BER and SNR. Moreover, the performance of a single IsOWC link has also been compared with multiple IsOWC links for a distance of 6500 km at 10 Gb/s data rate. The results show that system performance improves by using CSRZ format and multiple ISL links.

  相似文献   

14.
This paper assumes two users and a two‐way relay network with the combination of 2×2 multi‐input multi‐output (MIMO) and nonorthogonal multiple access (NOMA). To achieve network reliability without sacrificing network throughput, network‐coded MIMO‐NOMA schemes with convolutional, Reed‐Solomon (RS), and turbo codes are applied. Messages from two users at the relay node are network‐coded and combined in NOMA scheme. Interleaved differential encoding with redundancy (R‐RIDE) scheme is proposed together with MIMO‐NOMA system. Quadrature phase‐shift keying (QPSK) modulation technique is used. Bit error rate (BER) versus signal‐to‐noise ratio (SNR) (dB) and average mutual information (AMI) (bps/Hz) versus SNR (dB) in NOMA and MIMO‐NOMA schemes are evaluated and presented. From the simulated results, the combination of MIMO‐NOMA system with the proposed R‐RIDE‐Turbo network‐coded scheme in two‐way relay networks has better BER and higher AMI performance than conventional coded NOMA system. Furthermore, R‐RIDE‐Turbo scheme in MIMO‐NOMA system outperforms the other coded schemes in both MIMO‐NOMA and NOMA systems.  相似文献   

15.
A carrier phase recovery scheme suited for turbo‐coded systems with pre‐coded Gaussian minimum shift keying (GMSK) modulation is proposed and evaluated in terms of bit‐error‐rate (BER) performance. This scheme involves utilizing the extrinsic information obtained from the turbo‐decoder to aid an iterative carrier phase estimation process, based on a maximum‐likelihood (ML) strategy. The phase estimator works jointly with the turbo‐decoder, using the updated extrinsic information from the turbo‐decoder in every iterative decoding. A pre‐coder is used to remove the inherent differential encoding of the GMSK modulation. Two bandwidths of GMSK signals are considered: BT=0.5 and 0.25, which are recommended by the European Cooperation for Space Standardization (ECSS). It is shown that the performance of this technique is quite close to the perfect synchronized system within a wide range of phase errors. This technique is further developed to recover nearly any phase error in [?π,+π] by increasing the number of phase estimators and joint decoding units. This, however, will increase the complexity of the system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The bit error rate (BER) theory of silicon photomultiplier (SiPM) based on‐off keying optical communication receiver, which introduces photon equivalent threshold is established. The optical crosstalk effect, the dark counts, the amplitude fluctuations of output pulses of SiPM, the baseline fluctuation, the shape of the incident light pulse, the adjacent symbol interference as well as the photon detection efficiency (PDE) are considered in the theory model. The numerical result shows that the average minimum optical power required is much smaller than that of the avalanche photodiode‐based receivers under the same conditions. The BER of SiPM‐based optical communication receiver is very sensitive to the PDE and optical crosstalk (OC) probability of SiPM. For the application of digital optical communication, a SiPM with high PDE but low OC probability and low dark count rate is a preference, under the premise that the output pulse is fast enough. For the state‐of‐the‐art SiPMs, the dark count rate is small enough to obtain adequate BER, and the OC effect is not a big limitation of the performance of SiPM‐based receiver. Moreover, the amplitude fluctuation and the baseline fluctuation of the SiPM‐based receiver are not bottlenecks of the performance in practice.  相似文献   

17.
In this paper, the performance of transmission techniques on the fixed‐gain amplify‐and‐forward–based asymmetric radio frequency/free space optical (RF/FSO) communication system is studied. The RF link and FSO link are, respectively, modeled by the Nakagami‐m and Gamma‐Gamma fading channels under the effect of zero boresight and non‐zero boresight pointing errors subject to heterodyne detection. Maximum ratio transmission (MRT) and orthogonal space‐time block coding (OSTBC) techniques are the transmission scenarios considered at the system source while selection combining is used for reception at the relay and destination for the signal detection. Moreover, a unified cumulative density distribution (CDF) of end‐to‐end signal‐to‐noise ratio is derived for the system. By utilizing this channel statistical CDF, the closed‐form expressions for the outage probability and average bit error rate for the M‐ary phase shift keying modulation are then obtained for the system. The analysis presented illustrates that both the atmospheric turbulence and pointing error significantly degrade the system performance. Based on this, the MRT transmission technique offers a better performance compared with the OSTBC techniques under the same system conditions. The accuracy of the analytical results is verified by Monte‐Carlo simulations.  相似文献   

18.
Multiple‐input multiple‐output systems can achieve a full sum rate (SR) via full duplex (FD). However, its performance is degraded by self‐interference (SI) that occurs between the transmitter and receiver at the same node and thus is constrained by error floors. Conversely, half duplex (HD) can avoid the SI albeit at lower spectral efficiency, and the slope of its error curve is determined by the diversity order. In this study, a link selection scheme based on switching between FD and HD is examined as a simple method to improve the bit error rate (BER) performance of FD systems. In the proposed link selection algorithm, either FD or HD is selected based on the received minimum distance and signal‐to‐interference plus noise ratio. Simulation results indicate that the proposed hybrid FD/HD switching system offers significant BER performance improvement when compared with that of the conventional FD and FD based on only the received minimum distance under the same fixed SR. Under relatively sufficient SI cancellation, it is demonstrated to outperform the HD with a diversity advantage in low and medium signal‐to‐noise ratio region.  相似文献   

19.
In this paper, error performances of multiple‐input multiple‐output systems that employ Alamouti‐coded transmission with transmit antenna selection are examined for binary phase‐shift keying, binary frequency‐shift keying, M‐ary phase‐shift keying, and M‐ary quadrature amplitude‐modulation signals in independent but non‐identically distributed flat Nakagami‐m fading channels. Exact symbol error rate expressions are derived by using the moment‐generating function‐based analysis method. Upper bound expressions have been obtained in order to examine the asymptotic diversity order of transmit antenna selection/Alamouti scheme. Also, outage probability analysis of investigated systems has been given in order to examine the system capacity. Monte Carlo simulations have validated the analytical symbol error rate performance results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
We have investigated the performance and reliability improvement of cooperative free-space optical (FSO) communication over single input single output (SISO) system in this paper. The bit error rate (BER) analysis with quadrature phase shift keying (QPSK), gamma–gamma channel model and pointing error has been demonstrated for SISO and cooperative system. The performance improvement with different combining techniques in cooperative system for different channel environments has been shown in the paper. Markov models for reliability analysis of FSO systems in SISO and cooperative communication have been developed. We have obtained significant increase in availability and mean time between failures with cooperative communication over SISO model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号