首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
This article presents a small, low-profile planar microstrip antenna that is applicable for both WLAN and WiMAX applications. The goal of this paper is to design an antenna which can excite triple-band operation with appreciable impedance bandwidth to combine WLAN/WiMAX communication specifications simultaneously in one device. The designed antenna has a compact size of 10 × 26 mm2. The proposed antenna consists of an inverted U-shaped slot radiator and a defected ground plane. Overall the design method and parametric study found appropriate dimensions, which provides three distinct bands I from 2.40 to 2.52, II from 3.40 to 3.60 and III from 5.00 to 6.00 GHz that covers entire WLAN (2.4/5.2/5.8 GHz) and WiMAX (2.5/3.5/5.5) bands. Finally, a prototype antenna was fabricated and experimentally characterized to verify the design concept as well as to validate the simulation results. Thus the simulation results along with the measurements show that the antenna can simultaneously operate over WLAN and WiMAX frequency bands.  相似文献   

2.
In this paper, a slotted printed rectangular monopole antenna (SPRMA) is proposed that covers the entire UWB (ultra-wideband) except for WiMAX and WLAN (802.11/a-n). In the first stage, a rectangular monopole antenna is designed, which covers the entire UWB frequency. Then, a T-slot is inserted in the radiating patch to have the rejection of the band containing WiMAX and WLAN (802.11/a-n). The notch characteristics of the proposed antenna are observed from 3.0 to 3.65 GHz and 4.5 to 6.65 GHz respectively. Measured peak gain of 3.28 dBi has been observed at 4.25 GHz frequency. To show the validation of antenna, mathematical analysis using circuit theory has been also given in the paper. The prototype has been also tested inside the anechoic chamber to give the validation in real-time environment. Several other reported antenna structures have also the same notch band in UWB with different notching methods. The proposed structure's radiation properties are compared with other reported structures proving the compactness of the proposed structure.  相似文献   

3.
Triple band-rejection MIMO/Diversity UWB antenna characteristics are described in this paper. Proposed antenna discards worldwide interoperability for microwave access WiMAX band from 3.3 to 3.6 GHz, wireless local area network WLAN band from 5 to 6 GHz and X-Band satellite downlink communication band from 7.1 to 7.9 GHz. Mushroom Electromagnetic Band Gap (EBG) structures helps to attain band notches in WiMAX and WLAN bands. Uniplanar plus shaped EBG structure is used for notch in X-band downlink satellite communication band. Decoupling strips and slotted ground plane are employed to develop the isolation among two closely spaced UWB monopoles. The individual monopoles are 90° angularly separated with stepped structure which helps to reduce mutual coupling and also contributes towards impedance matching by increasing current path length. Mutual coupling magnitude of more than 15 dB is found over whole UWB frequency range. The Envelope Correlation Coefficient is less than 0.02 over whole UWB frequency range.The variations in the notched frequency with the variations in mushroom EBG structure parameters are investigated.The antenna has been designed using FR-4 substrate and overall dimensions is (64 × 45 × 1.6) mm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号