首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The confined crystallization of poly(?‐caprolactone) (PCL) block in poly(?‐caprolactone)–poly(l ‐lactide) (PCL‐PLLA) copolymers was investigated using differential scanning calorimetry, polarized optical microscopy, scanning electronic microscopy and atomic force microscopy. To study the effect of crystallization and molecular chain motion state of PLLA blocks in PCL‐PLLA copolymers on PCL crystallization morphology, high‐temperature annealing (180 °C) and low‐temperature annealing (80 °C) were applied to treat the samples. It was found that the crystallization morphology of PCL block in PCL‐PLLA copolymers is not only related to the ratio of block components, but also related to the thermal history. After annealing PCL‐PLLA copolymers at 180 °C, the molten PCL blocks are rejected from the front of PLLA crystal growth into the amorphous regions, which will lead to PCL and PLLA blocks exhibiting obvious fractionated crystallization and forming various morphologies depending on the length of PLLA segment. On the contrary, PCL blocks more easily form banded spherulites after PCL‐PLLA copolymers are annealed at 80 °C because the preexisting PLLA crystal template and the dangling amorphous PLLA chains on PCL segments more easily cause unequal stresses at opposite fold surfaces of PCL lamellae during the growth process. Also, it was found that the growth rate of banded spherulites is less than that of classical spherulites and the growth rate of banded spherulites decreases with decreasing band spacing. © 2019 Society of Chemical Industry  相似文献   

2.
A random terpolymer of L ‐lactide (LL), ?‐caprolactone (CL) and glycolide (G) has been synthesized in bulk at 130 °C using stannous octoate as the coordination–insertion initiator. The terpolymer, poly(LL‐ran‐CL‐ran‐G), has been characterized by a combination of analytical techniques: GPC, 1H NMR, 13C NMR, DSC and TG. Molecular weight characterization by GPC shows a unimodal molecular weight distribution with values of M n = 1.01 × 105 g mol?1 and M w / M n = 2.17. Compositional and microstructural analysis by 1H NMR and 13C NMR, respectively, reveal a terpolymer composition of LL:CL:G = 74:15:11 (mol%) with a chain microstructure consistent with random monomer sequencing. This latter view is supported by the terpolymer temperature transitions (Tg and Tm) from DSC and the thermal decomposition profile from TG. The results and, in particular, the conclusion that it is a random rather than a statistical terpolymer are discussed in the light of current theories regarding the mechanism of this type of polymerization. © 2001 Society of Chemical Industry  相似文献   

3.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

4.
This paper deals with the synthesis of a series of six‐armed star diblock copolymers based on poly(l ‐lactide) (PLLA) and poly(?‐caprolactone) (PCL) by ring‐opening polymerization using stannous octoate as catalyst and the preparation of polylactide (PLA)/PCL linear blends using a solution blending technique, while keeping the PLA‐to‐PCL ratio comparable in both systems. The thermal, rheological and mechanical properties of the copolymers and the blends were comparatively studied. The melting point and the degree of crystallinity were found to be lower for the copolymers than the blends due to poor folding property of star copolymers. Dynamic rheology revealed that the star polymers have lower elastic modulus, storage modulus and viscosity as compared to the corresponding blends with similar composition. The blends show two‐phase dispersed morphology whereas the copolymers exhibited microphase separated morphology with elongated (worm‐like) microdomains. The crystalline structures of the copolymers were characterized by larger crystallites than their blend counterparts, as estimated using Sherrer's equation based on wide‐angle X‐ray diffraction data. © 2016 Society of Chemical Industry  相似文献   

5.
Poly[(l ‐lactide)‐co ‐(? ‐caprolactone)] (PLCL) and poly[(l ‐lactide)‐co ‐glycolide] (PLGA) copolymers are widely used in neural guide tissue regeneration. In this research, the surface modification of their hydrophilicity was achieved using plasma treatment. Attachment and proliferation of olfactory ensheathing cells on treated electrospun membranes increased by 26 and 32%, respectively, compared to the untreated PLCL and PLGA counterparts. Cells cultivated on both the PLCL and PLGA membranes showed high viability (>95%) and healthy morphologies with no evidence of cytotoxic effects. Cells grown on treated electrospun fibres displayed significant increases in mitochondrial activity and reductions in membrane leakage when compared to untreated samples. The results suggested that plasma treatment of the surface of the polymers enhanced both cell viability and growth without incurring any cytotoxic effects. © 2017 Society of Chemical Industry  相似文献   

6.
The purpose of this research was to synthesize and characterize a novel class of four‐arm, star‐shape biodegradable polymers having double‐bond functionality as a precursor for free‐radical polymerization, with unsaturated monomers or macromers or photocrosslinking for network formation. The synthesis involved two basic steps. First, hydroxyl‐functionalized four‐arm poly(?‐caprolactone)s (PPCL‐OH) were synthesized by the ring‐opening polymerization of ?‐caprolactone in the presence of pentaerythritol and stannous octoate. Second, double‐bond–functionalized four‐arm poly(?‐caprolactone)s (PPCL‐Ma) were synthesized by reacting PPCL‐OH with maleic anhydride in the melt at 130°C. Quantitative conversion of hydroxyl functionality in PPCL‐OH to double‐bond functionality was achieved for low molecular weight PPCL‐OH. Both the PPCL‐OH and the PPCL‐Ma were characterized by FTIR, 1H‐NMR, 13C‐NMR, SEC, and DSC. The capability of the double‐bond–functionalized four‐arm poly(?‐caprolactone)s (PPCL‐Ma) to form network structures was preliminarily shown by photocrosslinking PPCL‐Ma. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2296–2306, 2002  相似文献   

7.
Lanthanide metal (II) 2,6‐di‐tert‐butylphenoxide complexes (ArO)2Ln(THF)3 (Ln = Sm 1 , Yb 2 ) alone have been developed to catalyze the ring‐opening polymerization of trimethylenecarbonate (TMC) and random copolymerization of TMC and ε‐caprolactone (ε‐CL) for the first time. The influence of reaction conditions, such as initiator, initiator concentration, polymerization temperature, and polymerization time, on monomer conversion, molecular weight, and molecular weight distribution of the resulting PTMC was investigated. It was found that the divalent complex 1 showed higher activity for the polymerization of TMC than complex 2 . The random structure and thermal behavior of the copolymers P(TMC‐co‐CL) have been characterized by 1H NMR, 13C NMR, GPC, and DSC analysis. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Random copolymers of trimethylene carbonate (TMC) and ε‐caprolactone (CL) have been synthesized by ring‐opening polymerization of TMC and CL in the presence of stannous octoate. The effects of feeding dose, reaction temperature and polymerization time, and effect of catalyst content on the copolymerization were investigated. The results showed that the composition of the copolymers was in good agreement with the feeding dose, and the molecular weight of the copolymers decreased firstly with increasing CL content and then increased. The decrease in the reaction temperature, polymerization time and catalyst content would increase the molecular weight of the copolymers. Furthermore, the feeding dose affected the thermal and mechanical properties of the copolymer largely, and the possessing different properties of random copolymers could be obtained by adjusting the copolymer compositions. This work could optimize the polymerization conditions to achieve the copolymers with controlled properties for implant applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
High‐molecular‐weight polymers of ϵ‐caprolactone (CL) and maleic anhydride (MA) with anhydride group content of about 1% wt have been synthesized and studied. The polymerization reaction was carried out in bulk under nitrogen atmosphere. Stannous octoate (Sn(oct)2), and 2,2'‐azobisisobutyronitrile (AIBN) were used as a catalyst and an initiator, respectively. A two‐level design of experiments was used to study the effect of various conditions on the characteristics of the copolymer. Reaction time, temperature, and concentration ratio of various reactants (two monomers, monomer to catalyst, and monomer to initiator) were the independent variables used, and the dependent variables included the molecular weight and the anhydride content in the polymer. Nuclear magnetic resonance (NMR) studies indicate that the succinic anhydride units were incorporated individually either to the polymer chain end or backbone. Anhydride content in the polymer and gel permeation chromatograph (GPC) studies indicate that the maleic anhydride acts as the true initiating species rather than as a comonomer in the system. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3189–3194, 2000  相似文献   

10.
Ethylzinc(II ) ethoxide is a highly active and efficient initiator for the bulk polymerization of 1,3‐trimethylene carbonate and its copolymerization with ? ‐caprolactone. This initiator allows one to obtain (co)polymers with high molar masses in quite a short time. Significant difference in co‐monomer reactivity and relatively low participation of intermolecular transesterification processes lead to the obtained copolymers being characterized by a gradient chain microstructure. In 13C NMR spectra, in all regions, we observed the presence of triads which were distinctly represented by four peaks for the carbonyl signal. Mechanical tests showed that copolymers containing 70% and more of ? ‐caprolactone presented a relatively high Young's modulus and a very high maximum elongation factor; therefore these materials are promising in many biomedical applications. Due to the high reaction rate, we also made an attempt at copolymerization using reactive extrusion which gave promising results. © 2017 Society of Chemical Industry  相似文献   

11.
Poly(ε‐caprolactone)/poly(ε‐caprolactone‐co‐lactide) (PCL/PLCL) blend filaments with various ratios of PCL and PLCL were prepared by melt spinning. The effect of PLCL content on the physical properties of the blended filament was investigated. The melt spinning of the blend was carried out and the as spun filament was subsequently subjected to drawing and heat setting process. The addition of PLCL caused significant changes in the mechanical properties of the filaments. Crystallinity of blend decreased with the addition of PLCL as observed by X‐ray diffraction (XRD) and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) revealed that the fracture surface becomes rougher at higher PLCL content. It may be proposed that PCL and PLCL show limited interaction within the blend matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Polycaprolactone (PCL) grafting on vinyl alcohol‐co‐vinyl acetate) (PVA‐Ac), was investigated in the melt at high temperature (170°C), below the PVA‐Ac melting point, by ring opening polymerization of ?‐caprolactone initiated by metal alkoxyde sites present in PVA‐Ac: no additional initiator was used. The obtained average structures were determined by 1H NMR. As expected, small grafts, with low average polymerization degree (DP), were obtained, between 4 and 12 h of reaction. These DP are due to exchange reactions between hydroxyl groups and PCL growing chains. The PVA‐Ac was shown to be partially substituted by short PCL grafts. The DP linearly increased with the initial Lactone/PVA‐Ac ratio, and the substituted alcohol sites rate were limited to 63%.It was shown that the used reactive system is characterized by a quazi‐living polymerization mechanism. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
Electrospinning of various polymers has been used to produce nanofibrous scaffolds that mimic the extracellular matrix and support cell attachment for the potential repair and engineering of nerve tissue. In the study reported here, an electrospun copolymer of l ‐lactide and ε‐caprolactone (67:33 mol%) resulted in a nanofibrous scaffold with average fibre diameter and pore size of 476 ± 88 and 253 ± 17 nm, respectively. Blending with low loadings of collagen (<2.5% w/w) significantly reduced the average diameter and pore size. The uniformity of fibre diameter distributions was supported with increasing collagen loadings. The nanofibrous scaffolds significantly promoted the attachment and proliferation of olfactory ensheathing cells compared to cells exhibiting asynchronous growth. Furthermore, analysis of cell health through mitochondrial activity, membrane leakage, cell cycle progression and apoptotic indices showed that the nanofibrous membranes promoted cell vigour, reducing necrosis. The study suggests that the use of more cost‐effective, low loadings of collagen supports morphological changes in electrospun poly[(l ‐lactide)‐co‐(ε‐caprolactone)] nanofibrous scaffolds, which also support attachment and proliferation of olfactory ensheathing cells while promoting cell health. The results here support further investigation of the electrospinning of these polymer blends as conduits for nerve repair. © 2013 Society of Chemical Industry  相似文献   

14.
Summary: The preparation of poly(ε‐caprolactone)‐g‐TiNbO5 nanocomposites via in situ intercalative polymerization of ε‐caprolactone initiated by an aluminium complex is described. These nanocomposites were obtained in the presence of HTiNbO5 mineral pre‐treated by AlMe3, but non‐modified by tetraalkylammonium cations. These hybrid materials obtained have been characterized by Fourier transform infrared absorption spectroscopy, wide‐angle X‐ray scattering, scanning electron microscopy, and dynamic mechanical analysis. Layered structure delamination and homogeneous distribution of mineral lamellae in the poly(ε‐caprolactone) (PCL) is figured out and strong improvement of the mechanical properties achieved. The storage modulus of the nanocomposites is enhanced as compared to pure PCL and increases monotonously with the amount of the filler in the range 3 to 10 wt.‐%.

SEM image of the fractured surface of a PCL‐TiNbO5 nanocomposite film.  相似文献   


15.
Three different ABA‐type triblock copolymers each containing biodegradable aliphatic polycarbonate as the middle block and poly(l ‐lactide) as the outer blocks were synthesized and the influence of the methylene chain length of the aliphatic polycarbonate middle block on various properties of the triblock copolymers was evaluated. Differential scanning calorimetry and wide‐angle X‐ray diffraction studies revealed that the incorporation of the outer blocks reduced the crystallinity of the middle aliphatic polycarbonate block. Variation of methylene chain length of the middle block led to a change in morphology from spherical to cylindrical as evidenced from atomic force microscopy studies. In addition, the mechanical properties of the block copolymers showed semi‐ductile to quasi‐brittle behaviour depending upon the composition of the middle block which was also confirmed using scanning electron microscopy. Dynamic mechanical analysis of the triblock copolymers indicated that storage modulus increased with a decrease in methylene chain length. © 2018 Society of Chemical Industry  相似文献   

16.
A germyl‐bridged lanthanocene chloride, Me2Ge(tBu‐C5H3)2LnCl (Ln = Nd; (Cat‐ Nd ), was prepared and successfully used as single catalyst to initiate the ring‐opening polymerization of ε‐caprolactone (ε‐CL) for the first time. Under mild conditions (60°C,[ε‐CL]/[Ln] = 200, 4 h), Cat‐ Nd efficiently catalyzes the polymerization of ε‐CL, giving poly(ε‐caprolactone) (PCL) with high molecular weight (MW) (>2.5 × 104) in high yield (>95%). The effects of molar ratio of [ε‐CL]/Cat‐Nd, polymerization temperature and time, as well as solvent were determined in detail. When the polymerization is carried out in bulk or in petroleum ether, it gives PCL with higher MW and perfect conversion (100%). The higher catalytic activity of this neodymocene chloride could be ascribed to the bigger atom in the bridge of bridged ring ligands. Some activators, such as NaBPh4, KBH4, AlEt3, and Al(i‐Bu)3, can promote the polymerization of ε‐CL by Cat‐ Nd, which leads to an increase both in the polymerization conversion and in the MW of PCL. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 1212–1217, 2012  相似文献   

17.
Poly(vinyl alcohol)‐initiated microwave‐assisted ring opening polymerization of ε‐caprolactone in bulk was investigated, and a series of poly(vinyl alcohol)‐graft‐poly(ε‐caprolactone) (PVA‐g‐PCL) copolymers were prepared, with the degree of polymerization (DP) of PCL side chains and the degree of substitution (DS) of PVA by PCL being in the range of 3–24 and 0.35–0.89, respectively. The resultant comb‐like PVA‐g‐PCL copolymers were confirmed by means of FTIR, 1H NMR, and viscometry measurement. The introduction of hydrophilic backbone resulted in the decrease in both melting point and crystallization property of the PVA‐g‐PCL copolymers comparing with linear PCL. With higher microwave power, the DP of PCL side chains and DS of PVA backbone were higher, and the polymerization reaction proceeded more rapidly. Both the DP and monomer conversion increased with irradiation time, while the DS increased first and then remained constant. With initiator in low concentration, the DP and DS were higher, while the monomer was converted more slowly. Microwaves dramatically improved the polymerization reaction in comparison of conventional heating method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3973–3979, 2007  相似文献   

18.
Poly(?‐caprolactone) (PCL) was formed on Solid core/mesoporous shell (SCMS) silica surface by surface‐initiated ring‐opening polymerization (SI‐ROP). The SI‐ROP of ?‐caprolactone was achieved by heating a mixture of SCMS silica, ?‐caprolactone and the tin(II) 2‐ethylhexanoate [Sn(Oct)2] in a anhydrous toluene for 20 h at different temperatures viz. 40, 60, and 80°C. The PCL grafted SCMS silica was characterized by fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X‐ray, differential scanning calorimetry and scanning electron microscopy (SEM). The FTIR spectroscopic analysis reveals the formation of ester linkage between PCL and hydroxyl terminated SCMS silica. TGA investigation shows increase in PCL content on SCMS silica surface with increase in reaction temperature. The SEM photographs clearly show the formation of PCL polymer on the SCMS silica surface without altering the spherical nature of SCMS silica. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Copolymerization of mixtures of L ‐lactide and ε‐caprolactone has been initiated by diphenylzinc. The reaction conditions were investigated, to discover the effects on yield, molecular weight and microstructure of copolymers obtained. The temperature used varied between 50 and 120 °C, the molar ratio of monomer to initiator ranged between 90 and 1440 mol/mol, and the molar ratio of ε‐caprolactone to L ‐lactide employed was between 100/0 and 0/100 mol/mol. Copolymers were characterized by 1H‐NMR, 13C‐NMR, DSC and gel permeation chromatography. The results indicate that incorporation of L ‐lactide to the growing chain is preferred and ε‐caprolactone is copolymerized after most of the L ‐lactide has been depleted. The microstructure of obtained copolyesters was affected considerably by transesterification reactions. It was observed that increasing reaction temperature, reaction time and concentration initiator was advantageous to the transesterification. The crystallinity of copolyester obtained was determined by differential scanning calorimetry. The results are in good agreement with both molar composition and sequence distribution of copolyesters. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
A novel hydroxyl‐terminated short‐chain penta‐armed phosphazene was prepared. This penta‐armed compound was studied as an initiator for the synthesis of asymmetric penta‐armed poly(ε‐caprolactone)s in the presence of stannous octoate. The effect of molar ratio of monomer to initiator was investigated. Thermal analysis revealed that the penta‐armed poly(ε‐caprolactone)s possessed lower melting point and crystallinity than linear ones. The penta‐armed poly(ε‐caprolactone)s with long chain‐length exhibited higher onset decomposition temperature and maximum decomposition temperature than linear ones owing to the presence of the phosphazene core. The in vitro degradation of linear and penta‐armed PCL was performed in phosphate buffer solution at 37 and 55 °C. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号