首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
In mobile distributed applications, such as traffic alert dissemination, dynamic route planning, file sharing, and so on, vehicular ad hoc network (VANET) has emerged as a feasible solution in recent years. However, the performance of the VANET depends on the routing protocol in accord with the delay and throughput requirements. Many of the routing protocols have been extensively studied in the literature. Although there are exemptions, they escalate research challenges in traffic aware routing (TAR) protocol of VANET. This paper introduces the fractional glowworm swarm optimization (FGWSO) for the TAR protocol of VANET in an urban scenario that can identify the optimal path for the vehicle with less traffic density and delay time. The proposed FGWSO searches the optimal routing path based on the fitness function formulated in this paper. Fractional glowworm swarm optimization is the combination of the GWSO and fractional theory. Moreover, exponential weighted moving average is utilized to predict the traffic density and the speed of the vehicle, which is utilized as the major constraints in the fitness function of the optimization algorithm to find the optimal traffic aware path. Simulation of FGWSO shows the significant improvement with a minimal end‐to‐end delay of 6.6395 seconds and distance of 17.3962 m, respectively, in comparison with the other existing routing approaches. The simulation also validates the optimality of the proposed TAR protocol.  相似文献   

2.
A mobile ad hoc network (MANET) is an autonomous collection of mobile nodes that communicate over relatively bandwidth‐constrained wireless links. MANETs need efficient algorithms to determine network connectivity, link scheduling, and routing. An important issue in network routing for MANETs is to conserve power while still achieve a high packet success rate. Traditional MANET routing protocols do not count for such concern. They all assume working with unlimited power reservoirs. Several ideas have been proposed for adding power‐awareness capabilities to ad hoc networks. Most of these proposals tackle the issue by either proposing new power‐aware routing protocols or modifying existing routing protocols through the deployment of power information as cost functions. None of them deal with counter‐measures that ought to be taken when nodes suffer from low power reserves and are subject to shut down in mid of normal network operations. In this paper, power‐awareness is added to a well‐known traditional routing protocol, the ad hoc on‐demand distance vector (AODV) routing protocol. The original algorithm is modified to deal with situations in which nodes experience low power reserves. Two schemes are proposed and compared with the original protocol using different performance metrics such as average end‐to‐end delays, transmission success rates, and throughputs. These schemes provide capabilities for AODV to deal with situations in which operating nodes have almost consumed their power reserves. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Mobile ad hoc networks (MANETs) are characterized by random, multi‐hop topologies that do not have a centralized coordinating entity or a fixed infrastructure that may change rapidly over time. In addition, mobile nodes operate with portable and finite power sources. In this work, we propose an energy‐efficient routing protocol for MANETs to minimize energy consumption and increase the network's consistency. Traditional works mainly focused on the shortest path‐based schemes to minimize energy, which might result into network failure because some nodes might exhaust fast as they are used repetitively, while some other nodes might not be used at all. This can lead to energy imbalance and to network life reduction. We propose an energy‐efficient ad hoc on‐demand routing protocol that balances energy load among nodes so that a minimum energy level is maintained among nodes and the network life increases. We focused on increasing the network longevity by distributing energy consumption in the network. We also compared the simulation results with a popular existing on‐demand routing protocol in this area, AODV, to establish the superiority of our approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The technical growth in the field of the wireless sensor networks (WSNs) has resulted in the process of collecting and forwarding the massive data between the nodes, which was a major challenge to the WSNs as it is associated with greater energy loss and delay. This resulted in the establishment of a routing protocol for the optimal selection of the multipath to progress the routing in WSNs. This paper proposes an energy‐efficient routing in WSNs using the hybrid optimization algorithm, cat–salp swarm algorithm (C‐SSA), which chooses the optimal hops in progressing the routing. Initially, the cluster heads (CHs) are selected using the low‐energy adaptive clustering hierarchy (LEACH) protocol that minimizes the traffic in the network. The CHs are engaged in the multihop routing, and the selection of the optimal paths is based on the proposed hybrid optimization, which chooses the optimal hops based on the energy constraints, such as energy, delay, intercluster distance, intracluster distance, link lifetime, delay, and distance. The simulation results prove that the proposed routing protocol acquired minimal delay of 0.3165 with 50 nodes and two hops, maximal energy of 0.1521 with 50 nodes and three hops, maximal number of the alive nodes as 39 with 100 nodes and two hops, and average throughput of 0.9379 with 100 nodes and three hops.  相似文献   

5.
One of the infrastructure-free networks is mobile ad hoc networks (MANETs) that are built with limited battery life using wireless mobile devices. This restricted battery capability in MANETs creates the necessity of considering the energy-awareness constraint in designing them. As routing protocols, the major aim of MANETs is to create the energy awareness in the network; it improves the network's lifetime through effectively utilizing the available restricted energy. Moreover, it creates some limitations like the mobility constraint, wireless link's sensitivity to environmental impacts, and restricted transmission range and residual energy of nodes that causes rapid modifications in the network topology and frequent link failure. By taking those problems, this paper plans to develop a new multipath routing protocol, where the hybrid optimization algorithm with the integration of cuckoo search optimization (CSO) and butterfly optimization algorithm (BOA) is proposed and named sensory modality-based cuckoo search butterfly optimization (SM-CSBO) for determining the optimal path between the source and destination. The main goal is to select the path with better link quality and more stable links to guarantee reliable data transmission. The multi-objective function is considered with the factors regarding distance, normalized energy, packet delivery ratio, and control overhead to develop an effective routing protocol in MANET. The proposed model of SM-CSBO algorithm has superior than 5.8%, 30.4%, 36.7%, and 39.3%, correspondingly maximized than PSO, SFO, CSO, and SFO algorithms while considering the number of nodes as 150. The simulation outcomes proved that it enhances network performance when compared with the other traditional protocols.  相似文献   

6.
QoS Routing is crucial for QoS provisioning in high‐speed networks. In general, QoS routing can be classified into two paradigms: source routing and hop‐by‐hop routing. In source routing, the entire path to the destination node of a communication request is locally computed at the source node based on the global state that it maintains, which does not scale well to large networks. In hop‐by‐hop routing, a path‐selecting process is shared among intermediate nodes between the source node and the destination node, which can largely improve the protocol scalability. In this paper, we present the design of hop‐by‐hop routing with backup route information such that each intermediate node can recursively update the best known feasible path, if possible, by collectively utilizing the routing information gathered thus far and the information that it locally stores. Such a route is kept as a backup route and its path cost is used as a reference to guide the subsequent routing process to search for a lower‐cost constrained path and avoid performance degradation. In this way, the information gathered is maximally utilized for improved performance. We prove the correctness of our presented algorithm and deduce its worst message complexity to be O(∣V2), where ∣V∣ is the number of network nodes. Simulation results indicate that, however, the designed algorithm requires much fewer messages on average. Therefore it scales well with respect to the network size. Moreover, simulation results demonstrate that the cost performance of our algorithm is near‐optimal. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we propose a cross‐layer optimized geographic node‐disjoint multipath routing algorithm, that is, two‐phase geographic greedy forwarding plus. To optimize the system as a whole, our algorithm is designed on the basis of multiple layers' interactions, taking into account the following. First is the physical layer, where sensor nodes are developed to scavenge the energy from environment, that is, node rechargeable operation (a kind of idle charging process to nodes). Each node can adjust its transmission power depending on its current energy level (the main object for nodes with energy harvesting is to avoid the routing hole when implementing the routing algorithm). Second is the sleep scheduling layer, where an energy‐balanced sleep scheduling scheme, that is, duty cycle (a kind of node sleep schedule that aims at putting the idle listening nodes in the network into sleep state such that the nodes will be awake only when they are needed), and energy‐consumption‐based connected k‐neighborhood is applied to allow sensor nodes to have enough time to recharge energy, which takes nodes' current energy level as the parameter to dynamically schedule nodes to be active or asleep. Third is the routing layer, in which a forwarding node chooses the next‐hop node based on 2‐hop neighbor information rather than 1‐hop. Performance of two‐phase geographic greedy forwarding plus algorithm is evaluated under three different forwarding policies, to meet different application requirements. Our extensive simulations show that by cross‐layer optimization, more shorter paths are found, resulting in shorter average path length, yet without causing much energy consumption. On top of these, a considerable increase of the network sleep rate is achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A mobile ad hoc network (MANET) is a self‐organized and adaptive wireless network formed by dynamically gathering mobile nodes. Since the topology of the network is constantly changing, the issue of routing packets and energy conservation become challenging tasks. In this paper, we propose a cross‐layer design that jointly considers routing and topology control taking mobility and interference into account for MANETs. We called the proposed protocol as Mobility‐aware Routing and Interference‐aware Topology control (MRIT) protocol. The main objective of the proposed protocol is to increase the network lifetime, reduce energy consumption, and find stable end‐to‐end routes for MANETs. We evaluate the performance of the proposed protocol by comprehensively simulating a set of random MANET environments. The results show that the proposed protocol reduces energy consumption rate, end‐to‐end delay, interference while preserving throughput and network connectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Congestion in the network is the main cause for packet drop and increased end‐to‐end transmission delay of packet between source and destination nodes. Congestion occurs because of the simultaneous contention for network resources. It is very important to efficiently utilize the available resources so that a load can be distributed efficiently throughout the network. Otherwise, the resources of heavily loaded nodes may be depleted very soon, which ultimately affects network performances. In this paper, we have proposed a new routing protocol named queue‐based multiple path load balancing routing protocol. This protocol discovers several node‐disjoint paths from source to destination nodes. It also finds minimum queue length with respect to individual paths, sorts the node‐disjoint paths based on queue length, and distributes the packets through these paths based on the minimum queue length. Simulation results show that the proposed routing protocol distributes the load efficiently and achieves better network performances in terms of packet delivery ratio, end‐to‐end delay, and routing overhead. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Recently, intelligent transportation systems (ITS) is becoming an important research topic. One goal of ITS is to exchange information among vehicles in a timely and efficient manner. In the ITS research community, inter‐vehicle communications (IVC) is considered a way that may be able to achieve this goal. An information network built on the top of vehicles using IVC can be viewed as a type of mobile ad hoc networks (MANETs). In the past, several unicast routing protocols for MANET have been proposed. However, most of them are designed for general MANETs rather than for IVC networks. In this paper, we first used more realistic vehicle mobility traces generated by a microscopic traffic simulator (VISSIM) to understand the characteristics of routing paths in an IVC network. Based on the insights gained from the derived path characteristics, we designed and implemented an intelligent flooding‐based routing protocol for small‐scale IVC networks. Via several field trials conducted on highways, we compared the performance of ad hoc on‐demand distance vector (AODV) and our protocol. Our experimental results show that (1) our protocol outperforms AODV greatly in IVC networks and (2) our protocol can provide text, image, audio, and video services for small‐scale IVC networks (e.g., a platoon) quite well. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The routing performance in mobile ad hoc networks (MANETs) relies on the co-operation of the individual nodes that constitute the network. The existence of misbehaving nodes may paralyze the routing operation in MANETs. To overcome this behavior, the trustworthiness of the network nodes should be considered in the route selection process combined with the hop count. The trustworthiness is achieved by measuring the trust value for each node in the network. In this paper, a new protocol based on self monitoring (agent-based) and following the dynamic source routing (DSR) algorithm is presented. This protocol is called agent-based trusted dynamic source routing protocol for MANETs. The objective of this protocol is to manage trust information locally with minimal overhead in terms of extra messages and time delay. This objective is achieved through installing in each participated node in the network a multi-agent system (MAS). MAS consists of two types of agents: monitoring agent and routing agent. A new mathematical and more realistic objective model for measuring the trust value is introduced. This model is weighted by both number and size of routed packets to reflect the “selective forwarding” behavior of a node. The performance evaluation via simulation shows that our protocol is better than standard and trusted DSR. The simulation is done over a variety of environmental conditions such as number of malicious nodes, host density and movement rates.  相似文献   

12.
Wireless networks are now very essential part for modern ubiquitous communication systems. The design of efficient routing and scheduling techniques for such networks have gained importance to ensure reliable communication. Most of the currently proposed geographic routing protocols are designed for 2D spatial distribution of user nodes, although in many practical scenarios user nodes may be deployed in 3D space also. In this paper, we propose 3D routing protocols for multihop wireless networks that may be implemented in two different ways depending on how the routing paths are computed. When the routing paths to different user nodes from the base station in the wireless network are computed by the base station, we call it centralized protocol (3DMA‐CS). A distributed routing (3DMA‐DS) protocol is implemented when respective routing path of each user node to the base station is computed by the user node. In both of these protocols, the user (base station) selects the relay node to forward packets in the direction of destination, from the set of its neighbours, which makes minimum angle with the reference line drawn from user (base station) to the base station (user), within its transmission range. The proposed protocols are free from looping problem and can solve the void node problem (VNP) of multihop wireless networks. Performance analysis of the proposed protocol is shown by calculating end‐to‐end throughput, average path length, end‐to‐end delay, and energy consumption of each routing path through extensive simulation under different network densities and transmission ranges.  相似文献   

13.
In this paper, we present an on‐demand flow regulated routing algorithm (OFRA) for ad hoc wireless networks. The OFRA consists of two parts: an intermediate node load evaluation process and a routing path selection process. The intermediate node load evaluation process evaluates the load efficiency of the intermediate nodes according to bandwidth, data packets and computing capability. The routing path selection process selects the routing path with lower flow and fewer intermediate nodes. The OFRA can prevent intermediate nodes to be overcrowded and distribute traffic load over routing paths more evenly. The simulation result shows that the percentage of blocked routing paths is reduced and the total flow is more balanced and distributed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Connecting wired and wireless networks, and particularly mobile wireless ad hoc networks (MANETs) and the global Internet, is attractive in real‐world scenarios due to its usefulness and praticality. Because of the various architectural mismatches between the Internet and MANETs with regard to their communication topology, routing protocols, and operation, it is necessary to introduce a hybrid interface capable of connecting to the Internet using Mobile IP protocol and to MANETs owing to an ad hoc routing protocol. Specifically, the approaches available in the literature have introduced updated versions of Mobile IP agents or access points at the edge of the Internet to help MANET nodes get multi‐hop wireless Internet access. The main differences in the existing approaches concern the type of ad hoc routing protocol as well as the switching algorithm used by MANET nodes to change their current Mobile IP agents based on specific switching criteria. This paper surveys a variety of approaches to providing multi‐hop wireless Internet access to MANET nodes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Mobile-Ad-Hoc-Networks (MANETs) are self-configuring networks of mobile nodes, which communicate through wireless links. The main issues in MANETs include the mobility of the network nodes, the scarcity of computational, bandwidth and energy resources. Thus, MANET routing protocols should explicitly consider network changes and node changes into the algorithm design. MANETs are particularly suited to guarantee connectivity in disaster relief scenarios, which are often impaired by the absence of network infrastructures. Moreover, such scenarios entail strict requirements on the lifetime of the device batteries and on the reactivity to possibly frequent link failures. This work proposes a proactive routing protocol, named MQ-Routing, aimed at maximizing the minimum node lifetime and at rapidly adapting to network topology changes. The proposed protocol modifies the Q-Routing algorithm, developed via Reinforcement Learning (RL) techniques, by introducing: (i) new metrics, which account for the paths availability and the energy in the path nodes, and which are dynamically combined and adapted to the changing network topologies and resources; (ii) a fully proactive approach to assure the protocol usage and reactivity in mobile scenarios. Extensive simulations validate the effectiveness of the proposed protocol, through comparisons with both the standard Q-Routing and the Optimized Link State Routing (OLSR) protocols.  相似文献   

16.
A mobile ad hoc networks (MANET) is a decentralized, self‐organizing, infrastructure‐less network and adaptive gathering of independent mobile nodes. Because of the unique characteristics of MANET, the major issues to develop a routing protocol in MANET are the security aspect and the network performance. In this paper, we propose a new secure protocol called Trust Ad Hoc On‐demand Distance Vector (AODV) using trust mechanism. Communication packets are only sent to the trusted neighbor nodes. Trust calculation is based on the behaviors and activities information of each node. It is divided in to trust global (TG) and trust local (TL). TG is a trust calculation based on the total of received routing packets and the total of sending routing packets. TL is a comparison between total received packets and total forwarded packets by neighbor node from specific nodes. Nodes conclude the total trust level of its neighbors by accumulating the TL and TG values. The performance of Trust AODV is evaluated under denial of service/distributed denial of service (DOS/DDOS) attack using network simulator NS‐2. It is compared with the Trust Cross Layer Secure (TCLS) protocol. Simulation results show that the Trust AODV has a better performance than TCLS protocol in terms of end‐to‐end delay, packet delivery ratio, and overhead. Next, we improve the performance of Trust AODV using ant algorithm. The proposed protocol is called Trust AODV + Ant. The implementation of ant algorithm in the proposed secure protocol is by adding an ant agent to put the positive pheromone in the node if the node is trusted. Ant agent is represented as a routing packet. The pheromone value is saved in the routing table of the node. We modified the original routing table by adding the pheromone value field. The path communication is selected based on the pheromone concentration and the shortest path. Trust AODV + Ant is compared with simple ant routing algorithm (SARA), AODV, and Trust AODV under DOS/DDOS attacks in terms of performance. Simulation results show that the packet delivery ratio and throughput of the Trust AODV increase after using ant algorithm. However, in terms of end‐to‐end delay, there is no significant improvement. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A mobile ad‐hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi‐hop radio network. Routing protocols in MANETs define how routes between source and destination nodes are established and maintained. Multicast routing provides a bandwidth‐efficient means for supporting group‐oriented applications. The increasing demand for such applications coupled with the inherent characteristics of MANETs (e.g., lack of infrastructure and node mobility) have made secure multicast routing a crucial yet challenging issue. Recently, several multicast routing protocols (MRP) have been proposed in MANETs. Depending on whether security is built‐in or added, MRP can be classified into two types: secure and security‐enhanced routing protocols, respectively. This paper presents a survey on secure and security‐enhanced MRP along with their security techniques and the types of attacks they can confront. A detailed comparison for the capability of the various routing protocols against some known attacks is also presented and analyzed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The fundamental issues in mobile cognitive radio ad‐hoc networks are the selection of the optimal stable paths between nodes and proper assignment of the frequency channels/time slots (communication segments) to the links. In this paper, a joint load balanced stable routing and communication segment assignment algorithm is proposed that considers jointly the mobility prediction, mitigating the co‐channel interference and energy consumption. The novelty of the proposed algorithm lies in the increasing of the path stability, which benefits from the maximum link lifetime parameter and introduced weighting function to keep routes away from the PU's region. This avoids the negative impacts on the PUs' operations and decreases the conflict of the cognitive nodes. In the proposed algorithm, the concept of load balancing is considered that yields in the balancing energy consumption in the network, improving the network performance and distributing traffic loads on all available channels. The effectiveness of the proposed algorithm is verified by evaluating the aggregate interference energy, average end‐to‐end delay, goodput, and the energy usage per packet under 6 scenarios. The results show that the performance of the proposed algorithm is significantly better than the recently proposed joint stable routing and channel assignment protocol.  相似文献   

19.
移动Ad-hoc网络(MANETs)具有开放的媒质,动态的拓扑结构,分布式的合作和受限的网络能力等基本特点。网络中移动节点具有匿名性和高度自治的特点,网络通讯依靠在通信路径上的中间节点转发数据包,实现无线传输范围外节点间的正常通信。该文提出了一种独特的MANETs中基于频率下多目标可信路由决策算法,它和现在大多数路由算法都是在时间域下使用单一约束参数选择路由的方式截然不同。利用概率理论分析安全和可信路由,基于概率密度函数的时频相互转化,减小计算复杂度,解决MEANTs中节点间缺乏物理安全以及在低信任水平和节点相互勾结扰乱网络操作情况下,发现可信安全路由难的问题。实例分析证明了此算法的可行性。  相似文献   

20.
Recently, wireless networks have become one of the major development trends in computer network technology. Because there is no more need of the wired transmission medium, applications have thus diversified. One such growing field of wireless networks is the mobile ad‐hoc network (MANET). A MANET consists of mobile hosts (such as portable laptops, vehicles, etc.), and no fixed infrastructure is required. MANETs provide ease of self‐configuration and can extend coverage at a low cost. Numerous applications have therefore been proposed under this network environment for daily life use. Because MANETs nodes are capable of moving, MANET network topology changes frequently. Thus, the traditional routing protocols fail to fit such an environment. In this paper, we propose an efficient routing protocol for MANETs, which integrates the mathematical model of profit optimization (the Kelly formula) from the field of economics to cope with the routing problem caused by node mobility. Some numerical simulations have been conducted to evaluate the performance of the proposed method using the network simulator NS‐2. The results show that our proposed method outperforms conventional routing protocols in packet delivery ratio comparisons; and the average end‐to‐end delays are within a tolerable range. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号