首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the mobile network progresses fast, mobile communications have a far‐reaching influence in our daily life. In order to guarantee the communication security, a myriad of experts introduced many authentication protocols. Recently, Qi et al presented an enhanced authentication with key agreement protocol for satellite communications, and they proclaimed that their protocol could defend various attacks and support varied security requirements. Regrettably, in this paper, we prove that their protocol was fruitless in resisting smart card stolen or loss attack, supporting perfect forward secrecy and had a fundamental error. To solve these problems, we present an improved protocol based on perfect forward secrecy. In addition, the analysis of our improved protocol suggests that it gets possession of faultless security properties and overcomes the flaws in the protocol of Qi et al perfectly. Thus, our improved protocol can be appropriated for the mobile communications.  相似文献   

2.
Internet of Vehicles (IoV), as the next generation of transportation systems, tries to make highway and public transportation more secure than used to be. In this system, users use public channels for their communication so they can be the victims of passive or active attacks. Therefore, a secure authentication protocol is essential for IoV; consequently, many protocols are presented to provide secure authentication for IoV. In 2018, Yu et al proposed a secure authentication protocol for WSNs in vehicular communications and claimed that their protocol could satisfy all crucial security features of a secure authentication protocol. Unfortunately, we found that their protocol is susceptible to sensor capture attack, user traceability attack, user impersonation attack, and offline sink node's secret key guessing attack. In this paper, we propose a new authentication protocol for IoV which can solve the weaknesses of Yu et al's protocol. Our protocol not only provides anonymous user registration phase and revocation smart card phase but also uses the biometric template in place of the password. We use both Burrow‐Abadi‐Needham (BAN) logic and real‐or‐random (ROR) model to present the formal analysis of our protocol. Finally, we compare our protocol with other existing related protocols in terms of security features and computation overhead. The results prove that our protocol can provide more security features and it is usable for IoV system.  相似文献   

3.
Nowadays, authentication protocols are essential for secure communications specially for roaming networks, distributed computer networks, and remote wireless communication. The numerous users in these networks rise vulnerabilities. Thus, privacy‐preserving methods have to be run to provide more reliable services and sustain privacy. Anonymous authentication is a method to remotely authenticate users with no revelation about their identity. In this paper, we analyze 2 smart card–based protocols that the user's identity is anonymous. However, we represent that they are vulnerable to privileged insider attack. It means that the servers can compromise the users' identity for breaking their privacy. Also, we highlight that the Wen et al protocol has flaws in both stolen smart card and stolen server attacks and the Odelu et al protocol is traceable. Then, we propose 2 modified anonymous authentication protocols. Finally, we analyze our improved protocols with both heuristic and formal methods.  相似文献   

4.
The primary goal of this research is to ensure secure communications by client‐server architectures in mobile environment. Although various two‐party authentication key exchange protocols are proposed and claimed to be resistant to a variety of attacks, studies have shown that various loopholes exist in these protocols. What's more, many two‐party authentication key exchange protocols use timestamp to prevent the replay attack and transmit the user's identity in plaintext form. Obviously, these methods will lead to the clock synchronization problem and user's anonymity problem. Fortunately, the three‐way challenged‐response handshake technique and masking user's original identity with a secret hash value used in our study address these problems well. Of course, the proposed protocol based on elliptic curve cryptography supports flawless mutual authentication of participants, agreement of session key, impersonation attack resistance, replay attack resistance, and prefect forward secrecy, as well. The analyses in the aspects of efficiency and security show that the proposed protocol is a better choice for mobile users.  相似文献   

5.
Understanding security failures of cryptographic protocols is the key to both patching existing protocols and designing future schemes. In this paper, we analyze two recent proposals in the area of password‐based remote user authentication using smart cards. First, we point out that the scheme of Chen et al. cannot achieve all the claimed security goals and report its following flaws: (i) it is vulnerable to offline password guessing attack under their nontamper resistance assumption of the smart cards; and (ii) it fails to provide forward secrecy. Then, we analyze an efficient dynamic ID‐based scheme without public‐key operations introduced by Wen and Li in 2012. This proposal attempts to overcome many of the well‐known security and efficiency shortcomings of previous schemes and supports more functionalities than its counterparts. Nevertheless, Wen–Li's protocol is vulnerable to offline password guessing attack and denial of service attack, and fails to provide forward secrecy and to preserve user anonymity. Furthermore, with the security analysis of these two schemes and our previous protocol design experience, we put forward three general principles that are vital for designing secure smart‐card‐based password authentication schemes: (i) public‐key techniques are indispensable to resist against offline password guessing attack and to preserve user anonymity under the nontamper resistance assumption of the smart card; (ii) there is an unavoidable trade‐off when fulfilling the goals of local password update and resistance to smart card loss attack; and (iii) at least two exponentiation (respectively elliptic curve point multiplication) operations conducted on the server side are necessary for achieving forward secrecy. The cryptanalysis results discourage any practical use of the two investigated schemes and are important for security engineers to make their choices correctly, whereas the proposed three principles are valuable to protocol designers for advancing more robust schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
To ensure secure communication in satellite communication systems, recently, Zhang et al presented an authentication with key agreement scheme and claimed that their scheme satisfies various security requirements. However, this paper demonstrates that Zhang et al's scheme is insecure against the stolen‐verifier attack and the denial of service attack. Furthermore, to authenticate a user, Zhang et al's scheme requires large computational load to exhaustively retrieve the user's identity and password from the account database according to a temporary identity and then update the temporary identity in the database. To overcome the weaknesses existing in Zhang et al's scheme, we proposed an enhanced authentication with key agreement scheme for satellite communication systems. The analyses of our proposed scheme show that the proposed scheme possesses perfect security properties and eliminates the weaknesses of Zhang et al's scheme well. Therefore, from the authors' viewpoints, the proposed scheme is more suitable for the authentication scheme of mobile satellite communication systems.  相似文献   

7.
Debiao He 《Ad hoc Networks》2012,10(6):1009-1016
With the continue evaluation of mobile devices in terms of the capabilities and services, security concerns increase dramatically. To provide secured communication in mobile client–server environment, many user authentication protocols from pairings have been proposed. In 2009, Goriparthi et al. proposed a new user authentication scheme for mobile client–server environment. In 2010, Wu et al. demonstrated that Goriparthi et al.’s protocol fails to provide mutual authentication and key agreement between the client and the server. To improve security, Wu et al. proposed an improved protocol and demonstrated that their protocol is provably secure in random oracle model. Based on Wu et al.’s work, Yoon et al. proposed another scheme to improve performance. However, their scheme just reduces one hash function operation at the both of client side and the server side. In this paper, we present a new user authentication and key agreement protocol using bilinear pairings for mobile client–server environment. Performance analysis shows that our protocol has better performance than Wu et al.’s protocol and Yoon et al.’s protocol. Then our protocol is more suited for mobile client–server environment. Security analysis is also given to demonstrate that our proposed protocol is provably secure against previous attacks.  相似文献   

8.
Smart card‐based client‐server authentication protocol is well popular for secure data exchange over insecure and hostile networks. Recently, Lee et al. put forward an authentication protocol by utilizing ElGamal cryptosystem and proved that it can withstand known security threats. This article evinces that the protocol of Lee et al. is unwilling to protect various important security vulnerabilities such as forgery attack and off‐line password‐guessing attack. To vanquish these loopholes, this article presents a robust authentication protocol for client‐server communication over any insecure networks. The security explanation of our protocol has done through the formal and informal mechanism and its outcome makes sure that the designed protocol is strong enough to resist the known vulnerabilities. In addition, we have simulated our protocol using ProVerif online software and its results certify that our protocol is safe against private information of the client and server. This paper also has made performance estimation of the presented protocol and others, and the outcome favors the presented protocol.  相似文献   

9.
Satellite's communication system is used to communicate under significant distance and circumstances where the other communication systems are not comfortable. Since all the data are exchanged over a public channel, so the security of the data is an essential component for the communicating parties. Both key exchange and authentication are two cryptographic tools to establish a secure communication between two parties. Currently, various kinds of authentication protocols are available to establish a secure network, but all of them depend on number–theoretical (discrete logarithm problem/factorization assumption) hard assumptions. Due to Shor's and Grover's computing algorithm number theoretic assumptions are breakable by quantum computers. Although Kumar and Garg have proposed a quantum attack-resistant protocol for satellite communication, it cannot resist stolen smart card attack. We have analyzed that how Kumar and Garg is vulnerable to the stolen smart card attack using differential power analysis attack described in He et al and Chen and Chen. We have also analyzed the modified version of signal leakage attack and sometimes called improved signal leakage attack on Kumar and Garg's protocol. We have tried to construct a secure and efficient authentication protocol for satellites communication that is secure against quantum computing. This is more efficient as it requires only three messages of exchange. This paper includes security proof and performance of the proposed authentication and key agreement protocol.  相似文献   

10.
In remote system security, 2‐factor authentication is one of the security approaches and provides fundamental protection to the system. Recently, numerous 2‐factor authentication schemes are proposed. In 2014, Troung et al proposed an enhanced dynamic authentication scheme using smart card mainly to provide anonymity, secure mutual authentication, and session key security. By the analysis of Troung et al's scheme, we observed that Troung et al' s scheme does not provide user anonymity, perfect forward secrecy, server's secret key security and does not allow the user to choose his/her password. We also identified that Troung et al's scheme is vulnerable to replay attack. To fix these security weaknesses, a robust authentication scheme is proposed and analyzed using the formal verification tool for measuring the robustness. From the observation of computational efficiency of the proposed scheme, we conclude that the scheme is more secure and easy to implement practically.  相似文献   

11.
As the core signaling protocol for multimedia services, such as voice over internet protocol, the session initiation protocol (SIP) is receiving much attention and its security is becoming increasingly important. It is critical to develop a roust user authentication protocol for SIP. The original authentication protocol is not strong enough to provide acceptable security level, and a number of authentication protocols have been proposed to strengthen the security. Recently, Zhang et al. proposed an efficient and flexible smart‐card‐based password authenticated key agreement protocol for SIP. They claimed that the protocol enjoys many unique properties and can withstand various attacks. However, we demonstrate that the scheme by Zhang et al. is insecure against the malicious insider impersonation attack. Specifically, a malicious user can impersonate other users registered with the same server. We also proposed an effective fix to remedy the flaw, which remedies the security flaw without sacrificing the efficiency. The lesson learned is that the authenticators must be closely coupled with the identity, and we should prevent the identity from being separated from the authenticators in the future design of two‐factor authentication protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In the last decade, the number of web‐based applications is increasing rapidly, which leads to high demand for user authentication protocol for multiserver environment. Many user‐authentication protocols have been proposed for different applications. Unfortunately, most of them either have some security weaknesses or suffer from unsatisfactory performance. Recently, Ali and Pal proposed a three‐factor user‐authentication protocol for multiserver environment. They claimed that their protocol can provide mutual authentication and is secure against many kinds of attacks. However, we find that Ali and Pal's protocol cannot provide user anonymity and is vulnerable to 4 kinds of attacks. To enhance security, we propose a new user‐authentication protocol for multiserver environment. Then, we provide a formal security analysis and a security discussion, which indicate our protocol is provably secure and can withstand various attacks. Besides, we present a performance analysis to show that our protocol is efficient and practical for real industrial environment.  相似文献   

13.
Recently, Zhang et al. proposed a password‐based authenticated key agreement for session initiation protocol (Int J Commun Syst 2013, doi:10.1002/dac.2499). They claimed that their protocol is secure against known security attacks. However, in this paper, we indicate that the protocol by Zhang et al. is vulnerable to impersonation attack whereby an active adversary without knowing the user's password is able to introduce himself/herself as the user. In addition, we show that the protocol by Zhang et al. suffers from password changing attack. To overcome the weaknesses, we propose an improved authentication scheme for session initiation protocol. The rigorous analysis shows that our scheme achieves more security than the scheme by Zhang et al. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
With the advent of state-of-art technologies, the Telecare Medicine Information System (TMIS) now offers fast and convenient healthcare services to patients at their doorsteps. However, this architecture engenders new risks and challenges to patients' and the server's confidentiality, integrity and security. In order to avoid any resource abuse and malicious attack, employing an authentication scheme is widely considered as the most effective approach for the TMIS to verify the legitimacy of patients and the server. Therefore, several authentication protocols have been proposed to this end. Very recently, Chaudhry et al. identified that there are vulnerabilities of impersonation attacks in Islam et al.'s scheme. Therefore, they introduced an improved protocol to mitigate those security flaws. Later, Qiu et al. proved that these schemes are vulnerable to the man-in-the-middle, impersonation and offline password guessing attacks. Thus, they introduced an improved scheme based on the fuzzy verifier techniques, which overcome all the security flaws of Chaudhry et al.'s scheme. However, there are still some security flaws in Qiu et al.'s protocol. In this article, we prove that Qiu et al.'s protocol has an incorrect notion of perfect user anonymity and is vulnerable to user impersonation attacks. Therefore, we introduce an improved protocol for authentication, which reduces all the security flaws of Qiu et al.'s protocol. We also make a comparison of our protocol with related protocols, which shows that our introduced protocol is more secure and efficient than previous protocols.  相似文献   

15.
Wearable devices, which provide the services of collecting personal data, monitoring health conditions, and so on, are widely used in many fields, ranging from sports to healthcare. Although wearable devices bring convenience to people's lives, they bring about significant security concerns, such as personal privacy disclosure and unauthorized access to wearable devices. To ensure the privacy and security of the sensitive data, it is critical to design an efficient authentication protocol suitable for wearable devices. Recently, Das et al proposed a lightweight authentication protocol, which achieves secure communication between the wearable device and the mobile terminal. However, we find that their protocol is vulnerable to offline password guessing attack and desynchronization attack. Therefore, we put forward a user centric three‐factor authentication scheme for wearable devices assisted by cloud server. Informal security analysis and formal analysis using ProVerif is executed to demonstrate that our protocol not only remedies the flaws of the protocol of Das et al but also meets desired security properties. Comparison with related schemes shows that our protocol satisfies security and usability simultaneously.  相似文献   

16.
With the fast development of the Internet and the telecommunication technologies, internet users are carrying out various electronic transactions over internet by means of the authentication protocols. To ensure efficient and robust online transaction, security of authentication protocol turns out to be a great concern nowadays. As a result, smartcard‐based password authentication and session key agreement scheme receives significant attention in recent years. In the literature, various authentication schemes have been proposed by the cryptographic research community. Recently, Li et al. analyze some security weaknesses of the authentication scheme of Chen et al. and propose an enhancement based on the discrete logarithm problem and computational Diffie–Hellman problem. This paper further cryptanalyzes the scheme of Li et al. and identifies various security loopholes and then constructs a modified authentication scheme as a remedy. The security and efficiency evaluations demonstrate that our scheme has more security features and low computation costs than the related schemes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
With the rapid growth of electronic commerce and demand on variants of Internet based applications, the system providing resources and business services often consists of many servers around the world. So far, a variety of authentication schemes have been published to achieve remote user authentication on multi-server communication environment. Recently, Pippal et al. proposed a multi-server based authentication protocol to pursue the system security and computation efficiency. Nevertheless, based on our analysis, the proposed scheme is insecure against user impersonation attack, server counterfeit attack, and man-in-the-middle attack. In this study, we first demonstrate how these malicious attacks can be invoked by an adversary. Then, a security enhanced authentication protocol is developed to eliminate all identified weaknesses. Meanwhile, the proposed protocol can achieve the same order of computation complexity as Pippal et al.’s protocol does.  相似文献   

18.
To circumvent using of multiple single servers, the theory of multiserver communication exists and numerous authentication protocols put forward for providing secure communication. Very recently, Amin‐Biswas proposes bilinear pairing–based multiserver scheme by describing some security pitfalls of Hsieh‐Leu protocol and claims that it is secured against related security threats. However, this paper claims that Amin‐Biswas protocol is still susceptible to off‐line identity and password guessing attack, user untraceability attack, and server masquerading attack. The cryptographic protocol should be attacks‐free for real‐time application. To achieve attacks‐free security, we put forward smart card–based multiserver authentication protocol by using the concept of bilinear pairing operation. The formal method strand space model has been used to prove the correctness of the proposed scheme. Additionally, rigorous security analysis ensures pliability of common security threats. The performance and security features of our scheme are also compared with that of the similar existing schemes. The comparison results show that our protocol achieves more security features with less complexity.  相似文献   

19.
The e‐commerce has got great development in the past decades and brings great convenience to people. Users can obtain all kinds of services through e‐commerce platform with mobile device from anywhere and at anytime. To make it work well, e‐commerce platform must be secure and provide privacy preserving. To achieve this goal, Islam et al. proposed a dynamic identity‐based remote user mutual authentication scheme with smart card using Elliptic Curve Cryptography(ECC). Islam et al claimed that the security of their scheme was good enough to resist various attacks. However, we demonstrate that their scheme is vulnerable to insider attack and suffers from off‐line password guessing attack if smart card is compromised. To overcome the deficiencies, we present an improved scheme over Islam's scheme. The security proof and analysis shows that our scheme can also provide user anonymity and mutual authentication, and the security is enough to against relay attack, impersonation attack, and other common secure attackers. The performance analysis shows that the proposed scheme is more efficient than Islam et al's scheme.  相似文献   

20.
Nowadays, the password-based remote user authentication mechanism using smart card is one of the simplest and convenient authentication ways to ensure secure communications over the public network environments. Recently, Liu et al. proposed an efficient and secure smart card based password authentication scheme. However, we find that Liu et al.’s scheme is vulnerable to the off-line password guessing attack and user impersonation attack. Furthermore, it also cannot provide user anonymity. In this paper, we cryptanalyze Liu et al.’s scheme and propose a security enhanced user authentication scheme to overcome the aforementioned problems. Especially, in order to preserve the user anonymity and prevent the guessing attack, we use the dynamic identity technique. The analysis shows that the proposed scheme is more secure and efficient than other related authentication schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号