首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polymer Composites》2017,38(5):870-876
Thermally conductive fillers are usually employed in the preparation of rubber composites to enhance thermal conductivity. In this work, ethylene‐propylene‐diene monomer rubber (EPDM)/expanded graphite (EG) and EPDM/graphite composites with up to 100 phr filler loading were prepared. Compared to EPDM/graphite compounds with the same filler loading, stronger filler network was demonstrated for EPDM/EG compounds. Thermal conductivity and mechanical properties of EPDM/graphite and EPDM/EG composites were compared and systematically investigated as a function of the filler loading. The thermal conductivity of both EPDM/graphite and EPDM/EG composites increased with increasing volume fraction of fillers, and could be well fitted by Geometric Mean Model. The thermal conductivity as high as 0.910 W · m−1 · K−1 was achieved for the EPDM/EG composite with 25.8 vol% EG, which was ∼4.5 times that of unfilled EPDM. Compared to EPDM/graphite composites, EPDM/EG composites exhibited much more significant improvement in thermal conductivity and mechanical properties, which could be well correlated with the better filler‐matrix interfacial compatibility and denser structure in EPDM/EG composites, as revealed in the SEM images of tensile fracture surfaces. POLYM. COMPOS., 38:870–876, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
《Ceramics International》2022,48(24):36029-36037
Superior performance fillers are considered as an effective means to enhance the performance of carbon/graphite composites. However, poor interfacial properties and incomplete filler networks limit the performance enhancement of the composites. In this study, a new method was proposed to weaken this impact through the synergistic effect of the electrostatic self-assembly of nano carbon black (NCB) onto carbon nanotubes (CNTs). The results showed that the synergistic effect between NCB and the CNTs significantly improved the mechanical and electrical properties of the composites. NCB reduces the porosity of the composites and increases the interaction between the CNTs and matrix. The compressive strength of the composite was 143.2 Mpa, and the flexural strength was 46.3 MPa, which is 210% higher than that of the pristine carbon/graphite composites. Moreover, NCB and CNTs form a globally connected synergistic network in the carbon skeleton. Composites filled with CNTs/NCB exhibited the lowest resistivity and highest thermal conductivity, with a resistance that was 42% lower than that of pristine carbon/graphite composites at 44.8 μΩ m. All of these results suggest that the synergistic effect of CNTs/NCB show great potential to improve the performance of carbon/graphite composites.  相似文献   

3.
Carbon nanotube–copper (CNT/Cu) composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS) technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.  相似文献   

4.
Polydopamine (PDA) was employed to modify micrometric Al2O3 platelets to improve the interfacial compatibility between α‐Al2O3 powder and ultrahigh‐molecular‐weight polyethylene (UHMWPE). The structure of PDA‐coated Al2O3 and UHMWPE composites was investigated via Fourier transform infrared spectroscopy, scanning electron microscopy and X‐ray photoelectron spectroscopy. The thermal stability and mechanical performance of the samples were also evaluated. It is clear that UHMWPE/PDA‐Al2O3 composites exhibit better mechanical properties, higher thermal stability and higher thermal conductivity than UHMWPE/Al2O3 composites, owing to the good dispersion of Al2O3 powder in the UHMWPE matrix and the strong interfacial force between the macromolecules and the inorganic filler caused by the presence of PDA. The tensile strength and the tensile elongation at break of UHMWPE/PDA‐Al2O3 composite with 1 wt% PDA‐Al2O3 are 62.508 MPa and 462%, which are 1.96 and 1.98 times higher than those of pure UHMWPE, respectively. The thermal conductivity of UHMWPE/PDA‐Al2O3 composite increases from 0.38 to 0.52 W m?1 K?1 with an increase in the dosage of PDA‐Al2O3 to 20 wt%. The results show that the prepared PDA‐coated Al2O3 powder can simultaneously enhance the mechanical properties and thermal conductivity of UHMWPE. © 2018 Society of Chemical Industry  相似文献   

5.
Short carbon fiber reinforced graphite blocks (SFGs) were fabricated from a mixture of mesophase pitch, natural graphite flakes and short carbon fibers by hot-pressing at 2773 K. The effect of fiber content on the structure and thermal/mechanical properties of the SFGs was investigated. It was found that introducing the fibers lowered the densification, and also changed the pore structure and pore size distribution. Compared with the pristine block, all the SFGs earned improved in-plane thermal conductivity and mechanical strength. The formation of a heat flow network and the increase of crystalline sizes made a synergistic effect on the promotion of in-plane thermal conductivity. In-plane thermal conductivity reached the maximum when the fiber content was 6 wt.%. The increase of mechanical strength was mainly attributed to the pull-out of fibers from the matrix. The bend and compressive strength in the direction perpendicular to graphite layers reached the maximum values of 39.6 MPa and 65.5 MPa for fiber content of 8 wt.%, respectively.  相似文献   

6.
Highly conductive polypyrrole/graphite nanosheets/Gd3+ (PPy/nanoG/Gd3+) composites are fabricated via in situ polymerization using p‐toluenesulfonic acid as a dopant and FeCl3 as an oxidant. The effects of the graphite nanosheets and Gd3+ loading on the electrical conductivity are investigated. The maximum conductivity of PPy/nanoG/Gd3+ composites about 17.86 S/cm found with 3 wt% graphite nanosheets and 6 wt% Gd3+ at room temperature. The results showed that the high‐aspect‐ratio structure of graphite nanosheets played an important role in forming a conducting network in PPy matrix. Thermal gravimetric analysis demonstrates an improved thermal stability of PPy in the PPy/nanoG/Gd3+ composites. The microstructures of PPy/nanoG/Gd3+ are evidenced by the SEM and TEM examinations. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

7.
Sulfonated poly(ether ether ketone) (SPEEK) membranes were modified by impregnation with the ionic liquid (IL) 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMI.BF4) by immersion into an IL aqueous solution for different periods of time. The modified membranes were investigated by thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), ion exchange capacity (IEC), and conductivity. The SPEEK membrane immersed into the IL aqueous solution for 2 min showed greater dimensional and thermal stability than the pristine SPEEK membrane, and achieved higher decomposition temperatures. It also presented a higher conductivity value (1.0 mS cm?1), indicating that BMI.BF4 is a promoter of proton conductivity. The membrane electrode assembly (MEA) produced reached maximum values of power density of 0.13 W cm?2 and current density of 0.54 A cm?2 during fuel cell operation. The results indicate that the SPEEK membrane modified by immersion for 2 min is promising for use in a proton exchange membrane fuel cell. Its performance yielded values very close to those obtained with Nafion, which reaches maximum values of power density of 0.19 W cm?2 and current density of 0.77 A cm?2. POLYM. ENG. SCI. 56:1037–1044, 2016. © 2016 Society of Plastics Engineers  相似文献   

8.
Polycaprolactone/boron nitride (PCL/BN) composites were prepared by microwave‐assisted ring‐opening polymerization of ε‐caprolactone (ε‐CL). In order to improve the dispersibility and interfacial interaction between BN fillers and PCL matrix, hydroxyl functional BN (mBN) was first prepared to be used as a macroinitiator for ε‐CL. Then BN grafted PCL (BN‐g‐PCL) copolymers were obtained via the in situ method, which acted as in situ compatibilizers in the PCL/BN composites. Various techniques were applied to characterize the mBN and PCL/BN composites. The Fourier transform infrared spectroscopy results confirm the structure of the BN‐g‐PCL copolymer. Field emission SEM graphs exhibit that, for the PCL/mBN composites, the mBN presents a homogeneous dispersion in the matrix and interfacial adhesion between the PCL and mBN is improved. These are beneficial for enhancing the thermal conductivity of the PCL/mBN composites. Notably, the PCL/mBN composite with 5 wt% mBN loading achieves the highest thermal conductivity of 0.55 W m?1 K?1, which is 2.75 times higher than that of pure PCL, 0.20 W m?1 K?1. This indicates that the excellent dispersion and interfacial adhesion could lead to the construction of continuous thermal conductive paths at a low BN loading and reduce the heat loss caused by phonon scattering in the interface. Furthermore, mBN could help to improve the mechanical properties of the composite. On adding 5 wt% mBN, the tensile strength and tensile modulus of the composite are 1.58 and 2.05 times higher, respectively, than those of PCL. © 2020 Society of Chemical Industry  相似文献   

9.
In situ polymerization of styrene was conducted in the presence of expanded graphite obtained by rapid heating of a graphite intercalation compound (GIC), to form a polystyrene–expanded graphite conducting composite. The composite showed excellent electrically conducting properties even though the graphite content was much lower than in normal composites. The transition of the composite from an electrical insulator to an electrical semiconductor occurred when the graphite content was 1.8 wt%, which is much lower than that of conventional conducting polymer composites. TEM, SEM and other studies suggest that the graphite was dispersed in the form of nanosheets in a polymer matrix with a thickness of 10–30 nm, without modification of the space between carbon layers and the structure of the graphite crystallites. The composite exhibited high electrical conductivity of 10?2 S cm?1 when the graphite content was 2.8–3.0 wt%. This great improvement of conductivity could be attributed to the high aspect ratio (width‐to‐thickness) of the graphite nanosheets. The rolling process strongly affected the conductivity and the mechanical properties of the composite. © 2001 Society of Chemical Industry  相似文献   

10.
A series of ethylene–octene copolymer (EOC) composites have been prepared by melt‐mixing with different weight ratios of expandable graphite filler (0–50% by weight). Electrical conductivity [both alternating current (AC) and direct current (DC)] and thermal conductivity studies were carried out. Effect of filler loading and frequency on electrical conductivity was studied. DC conductivity has increased from 1.51 × 10?13 S cm?1 to 1.17 × 10?1 S cm?1. Percolation threshold by DC and also AC methods was observed at about 16 vol% of the filler. Real part of permittivity was found to be decreasing with increase in frequency while conductivity was increasing. Thermal conductivity was also found to be increasing gradually from 0.196 to 0.676 Wm?1 K?1 which is about 245% increase. Graphite not only increases the electrical and thermal conductivities but at and above 40 wt%, also acts as a halogen‐free, environmental friendly flame retardant. Shore‐A hardness of EOC/graphite composites shows that even with high graphite loading, the hardness is increased from about 50–68 only so that the rubbery nature of the composite is not affected very much. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
Nanocomposites of iron oxide (Fe3O4) with a sulfonated polyaniline, poly(aniline‐co‐aminonaphthalenesulfonic acid) [SPAN(ANSA)], were synthesized through chemical oxidative copolymerization of aniline and 5‐amino‐2‐naphthalenesulfonic acid/1‐amino‐5‐naphthalenesulfonic acid in the presence of Fe3O4 nanoparticles. The nanocomposites [Fe3O4/SPAN(ANSA)‐NCs] were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, elemental analysis, UV–visible spectroscopy, thermogravimetric analysis (TGA), superconductor quantum interference device (SQUID), and electrical conductivity measurements. The TEM images reveal that nanocrystalline Fe3O4 particles were homogeneously incorporated within the polymer matrix with the sizes in the range of 10–15 nm. XRD pattern reveals that pure Fe3O4 particles are having spinel structure, and nanocomposites are more crystalline in comparison to pristine polymers. Differential thermogravimetric (DTG) curves obtained through TGA informs that polymer chains in the composites have better thermal stability than that of the pristine copolymers. FTIR spectra provide information on the structure of the composites. The conductivity of the nanocomposites (~ 0.5 S cm?1) is higher than that of pristine PANI (~ 10?3 S cm?1). The charge transport behavior of the composites is explained through temperature difference of conductivity. The temperature dependence of conductivity fits with the quasi‐1D variable range hopping (quasi‐1D VRH) model. SQUID analysis reveals that the composites show ferromagnetic behavior at room temperature. The maximum saturation magnetization of the composite is 9.7 emu g?1. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

12.
We report a new method for the synthesis of polythiophene (PTh)/graphene oxide (GO) nanocomposites by interfacial polymerization. Polymerization occurred at the interface of two immiscible solvents, i.e. n‐hexane containing thiophene and nitromethane containing GO and an initiator. Characterizations were done using Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, and electrochemical and electrical conductivity measurements. Spectroscopic analyses showed successful incorporation of GO in the PTh matrix. Morphological analysis revealed good dispersion of GO sheets in the polymer matrix. The PTh/GO composites showed marked improvements in thermal stability and electrical conductivity (2.7 × 10?4 S cm?1) compared to pure PTh. The composites exhibited excellent electrochemical reversibility compared to pure PTh at a scan rate of 0.1 V s?1. The composites were stable even up to 100 electrochemical cycles, indicating good cycle performance. The specific capacitance of the composites was calculated using cyclic voltammetry and was found to be 99 F g?1. © 2014 Society of Chemical Industry  相似文献   

13.
In this work, high electrically conductive Polymethylmethacrylate/graphite (PMMA/G) composites with a specific core-shell structure were synthesized via Pickering emulsion (solid-stabilized emulsion) route. The electrical conductivity of the core-shell composites was measured by a four-point probe resistivity determiner and a very high value of 9.8?×?10?3 S/cm (1013 times higher than virgin PMMA) was obtained at 30 wt% graphite. However, the electrical conductivity of the PMMA/G composites gained through traditional blend process was relatively lower and the value only reached 9.4?×?10?9 S/cm at same graphite loading fraction. Contact angle measurement was applied to determine the surface free energy of the modified graphite which was cladded by Al(OH)3. The morphology of the core-shell composites was observed by SEM and optical microscopy. Dynamic rheology analysis was employed to study the structural change by the interconnection of the graphite flakes and the formation of the networks in the composites. The interconnected networks of the core-shell composites were more easily constructed when compared with the composites obtained by the traditional blending process.  相似文献   

14.
《Ceramics International》2019,45(14):17344-17353
The processing of 3D carbon fiber reinforced SiCN ceramic matrix composites prepared by polymer impregnation and pyrolysis (PIP) route was improved, and factors that determined the mechanical performance of the resulting composites were discussed. 3D Cf/SiCN composites with a relative density of ∼81% and uniform microstructure were obtained after 6 PIP cycles. The optimum bending strength, Young's modulus and fracture toughness of the composites were 75.2 MPa, 66.3 GPa and 1.65 MPa m1/2, respectively. The residual strength retention rate of the as-pyrolyzed composites was 93.3% after thermal shock test at ΔT = 780 °C. It further degraded to 14.6% when the thermal shock temperature difference reached to 1180 °C. The bending strength of the composites was 35.6 MPa after annealing at 1000 °C in static air. The deterioration of the bending strength should be attributed to the strength degradation of carbon fibers and decomposition of interfacial structure.  相似文献   

15.
We reported a novel approach for epoxy composites by incorporation of hyperbranched polyglycerol (HPG) grafted sisal cellulose fibers (SCF). In this work, we have synthesized SCF wrapped HPG shell (SCF-g-HPG) by a “grafting from” strategy for the strong interfacial interaction between fillers and matrix. It was found that the thermal and mechanical properties of epoxy composites were greatly improved by incorporating SCF-g-HPG. For example, the impact strength, flexural strength, tensile strength, Young’s modulus and toughness of the composites with 3.0 wt% SCF-g-HPG loading were 38.35 KJ/m2, 123.40 MPa, 86.62 MPa, 151.7 MPa, and 417.84 MJ/m3, significantly increased by 119.1 %, 55.2 %, 45.6 %, 43.1 %, and 166.1 % respectively, as compared with neat epoxy. In addition, thermal stability of SCF-g-HPG/epoxy composites also showed an obvious enhancement compared with neat epoxy.  相似文献   

16.
Nano‐fillers play an important role in the final structure and properties of nanocomposites. The objective of the work presented here was to prepare nanocomposite films of chitosan/α‐zirconium phosphate using a casting process, with α‐zirconium phosphate (α‐ZrP) as nano‐filler and chitosan as matrix. The effects of α‐ZrP on the structure and properties of the nanocomposites were investigated. X‐ray diffraction patterns showed that α‐ZrP crystals were intercalated by n‐butylamine. The results from scanning electron microscopy and transmission electron microscopy indicated that α‐ZrP could be uniformly dispersed in the chitosan matrix when α‐ZrP loading in the composites was less than 2 wt%. A strong interaction between α‐ZrP and chitosan formed during the film‐forming process. Tensile testing showed that the tensile strength and elongation at break of nanocomposite films achieved maximum values of 61.6 MPa and 58.1%, respectively, when α‐ZrP loading was 2 wt%. The parameter B calculated from tensile yield stress according to the Pukanszky model was used to estimate the interfacial interaction between the chitosan matrix and α‐ZrP. Films with a loading of 2 wt% α‐ZrP had the highest B value (3.2), indicating the strongest interfacial interaction. The moisture uptake of the nanocomposites was reduced with addition of α‐ZrP. It can be concluded that α‐ZrP as nano‐filler in a chitosan matrix can enhance the mechanical properties of nanocomposites due to the strong interactions between α‐ZrP and chitosan. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
A silane coupling agent was used to modify the surface of expanded graphite (EG), which was subsequently used as a thermally conductive filler to fabricate diglycidylether of bisphenol-A (DGEBA)/EG composites with high thermal conductivity via hot blending and compression-curing processes. The surface characteristics of silane coupling agent-modified EG (Si@EG) were characterized by a variety of analytical techniques. The effects of the Si@EG content on the thermal conductivity, thermal stability, impact strength, and morphology of the DGEBA/Si@EG composites were investigated. The results revealed that the addition of 80 wt.% Si@EG increased the thermal conductivity of the composites from 0.17 to 10.56 W/m K, which was 61.1 times higher than that of pristine DGEBA. The initial decomposition temperature of the composite containing 80 wt.% Si@EG was 60.6°C higher than that of pristine DGEBA. The impact strength of the composites decreased from 2.0 to 0.87 kJ/m2 when the Si@EG content increased from 0 to 80 wt.%. The scanning electron microscopy images of the fractured surfaces revealed that the EG sheets in the DGEBA matrix formed a continuous thermally conductive path at high Si@EG contents.  相似文献   

18.
Highly filled graphite polybenzoxazine composites as bipolar plate material for polymer electrolyte membrane fuel cell (PEMFC) are developed. At the maximum graphite content of 80 wt % (68 vol %), storage modulus was increased from 5.9 GPa of the neat polybenzoxazine matrix to 23 GPa in the composite. Glass transition temperatures (Tg) of the composites were ranging from 176°C to 195°C and the values substantially increased with increasing the graphite contents. Thermal conductivity as high as 10.2 W/mK and electrical conductivity of 245 S cm?1 were obtained in the graphite filled polybenzoxazine at its maximum graphite loading. The obtained properties of the graphite filled polybenzoxazine composites exhibit most values exceed the United States department of energy requirements for PEMFC applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3909–3918, 2013  相似文献   

19.
The present research focuses on the preparation of an efficient material that acts as a deterrent to electromagnetic pollution. In this study, graphite and carbon fiber (CF) reinforced polypropylene (PP) composites (GCF) are prepared using a melt processing technique via a twin-screw extruder. The prepared composites were evaluated for mechanical, thermal, DC conductivity, and EMI shielding properties. There is a rise in the tensile strength (4.32%) and thermal stability (6.57%) of composites were recorded as compared to pure PP. The fractured morphology of the composites showed the breakdown of CF, leading to the improvement in the tensile strength of the composites. An increase in electrical conductivity was seen at maximum (GCF4) filler loading indicating 2.31 × 10?4 S/cm which is much better than the pure PP value (2.07 × 10?10 S/cm). The maximum value of shielding effectiveness is achieved at the maximum weight percentage of filler loading which is ?44.43 dB with a thickness of 2 mm covering the X-band (8.2–12.4 GHz).  相似文献   

20.
General-purpose polystyrene (GPPS)/graphite flake composites with a segregated structure were fabricated by newly developed binder mixing method, aiming at highly thermally conductive polymer composites. The coefficient of thermal conductivity of the GPPS/graphite composites can be easily improved to be 3.5?W?m?1?k?1 at a graphite flakes loading of 24.7?vol%, showing an improvement of more than 2,000% compared with pure GPPS. The thermal conductivity of the composites increased with the increasing particle size of graphite flakes, while the mechanical properties of composites are decreased with the increasing particle size of GPPS resin particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号