首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
采用一种简单新颖的原位化学改性方法制备了锂电池用CF_x-Cu复合正极材料。采用XRD、SEM、EDS、TGA、EIS、CV和恒电流放电对正极材料的结构、形貌、反应机理和电化学性能进行了表征。Cu O与分布在CF_x边缘或表面的非活性基团反应原位生成纳米铜,有效地提高了材料的电子导电性和锂离子扩散率,从而使改性材料显示出优异的比容量、倍率性能及功率密度。CF_x-Cu复合材料在5 C的高倍率下,其放电比容量高达546 m Ah/g,最大功率密度为8393 W/kg,放电电压平台为2.0 V。  相似文献   

2.
采用乙醇作为介质,FeCl3为氧化剂,对甲苯磺酸钠为掺杂剂,通过吡咯单体在钒酸锂表面的氧化聚合制备出了钒酸锂/聚吡咯(LiV3O8/PPy)复合材料。采用X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)对复合材料的结构与形貌进行表征。用恒流充放电测试、循环伏安(CV)和交流阻抗(EIS)等研究了聚吡咯包覆量对材料电化学性能的影响。结果表明:在钒酸锂表面均匀地包覆了一层厚度约10nm的聚吡咯,但并没有改变钒酸锂的晶型结构。当聚吡咯包覆量为6% 时,复合材料的电化学性能最好,在0.1C充放电倍率下,首次放电比容量为274mAh/g,循环100次后样品的放电比容量为239.4mAh/g,容量保持率为87.4%,而未包覆PPy的LiV3O8,其首次放电比容量为227.4mAh/g,循环100次后样品的放电比容量为160.1mAh/g,容量保持率仅为70.4%。LiV3O8/PPy复合正极材料的电化学性能得到了明显提高。  相似文献   

3.
采用高温固相法合成了Cr3+掺杂的LiNi0.5Mn1.5O4正极材料,研究了掺杂量对材料物理性能和电化学性能的影响。利用XRD、SEM对材料的结构和形貌进行了表征,结果显示样品具有棱边清晰的尖晶石形貌。讨论了不同Cr3+掺杂量对LiCrxNi0.5-0.5xMn1.5-0.5xO4(x=0,0.05,0.1,0.15,0.2)正极材料性能的影响。充放电测试、循环伏安和交流阻抗测试结果表明:当Cr3+的掺杂量为x=0.1时(LiCr0.1Ni0.45Mn1.45O4)正极材料的性能最好,0.1C、0.5C、1C、2C及5C的首次放电比容量依次为131.54mAh g-1、126.84mAh g-1、121.28mAh g-1、116.49mAh g-1和96.82mAh g-1,1C倍率下循环50次,容量保持率仍为96.5%。  相似文献   

4.
以La2O3粉、Al粉、CuO粉为反应物原料、纯铜为基体,采用原位合成技术和近熔点铸造法制备颗粒增强Cu基复合材料,研究La2O3对Al-CuO体系制备的Cu基复合材料组织及性能的影响。结果表明:添加La2O3可获得纳米Al2O3颗粒,且弥散分布于Cu基体中,制备的材料组织更加细小、均匀,其材料的电导率及摩擦磨损性能明显提高。当添加0.6%wtLa2O3,复合材料的电导率达到90.2%IACS,磨损量达到最小,相比未添加La2O3,其导电率提高10.1%,磨损量减小36.6%。  相似文献   

5.
杨绍斌  沈丁  李强 《金属学报》2010,46(1):19-25
采用固相烧结和球磨相结合的方法制备了锂离子电池负极复合材料Sn0.35-0.5xCo0.35-0.5xZnxC0.30 (摩尔分数x分别为0, 0.05, 0.10, 0.15和0.20), 考察了Zn添加量对材料结构和电化学性能的影响. 烧结粉末样品的XRD分析表明, 随着Zn含量的增多, 在CoSn主相基础上, 先形成少量CoSn2相, 随后形成少量Co3Sn2, Zn和Sn相. 大部分 Zn原子固溶于CoSn相. 电性能分析表明, 随着Zn含量的增加, 首次放电容量和充放电效率都呈现先增加而后趋于稳定的趋势, 当x=0.15时, 首次放电容量和充放电效率都接近最大值, 分别为343 mA-h/g和73.8%; 经过 25 cyc充放电后放电容量保持了首次放电容量的87.6%. 这表明Zn原子固溶引起的晶格畸变和多种相生成导致相界数量的增多, 加快了Li+动力学扩散速度, 从而显著改善了电化学性能. 选择烧结粉末样品Sn0.275Co0.275Zn0.15C0.30进行球磨, 晶粒和颗粒的细化使样品的放电容量显著提升, 但对首次放电效率和循环性能改善不明显.  相似文献   

6.
采用具有高效传质和微观混合性能的定-转子反应器制备了LiFe1-xMnxPO4 (x=0.0, 0.1, 0.2, 0.3)和LiFe1-xNixPO4 (x=0.00, 0.03, 0.05, 0.07)粉体,分别用作正极材料制成电池后,采用电池测试系统测定了电池的电化学性能随温度的变化规律。结果表明,粉体颗粒呈类球形,尺寸分布均匀,粒径范围为5~10 μm,Mn和Ni的掺杂没有改变粉体的晶体结构。以LiFe0.8Mn0.2PO4和LiFe0.95Ni0.05PO4两种组成的粉体性能最好,在倍率0.1 C下,所得电池的首次充放电比容量在室温和50 oC时,分别为153.2和155.7 mAh/g,及156.4和160.4 mAh/g;100次充放电循环后电池的容量保持率分别为95.4和96.5%,及93.8和95.0%。借助具有过程强化作用的定-转子反应器制备的Mn和Ni掺杂LiFePO4正极材料的电性能得到显著提高。原因是定-转子反应器一方面可以制备颗粒尺寸均匀的粉体,另一方面又可使掺杂的Mn和Ni在粉体颗粒中均匀分布,两者同时提高了电池中Li+的扩散速率,进而提高了锂离子电池的电化学性能和高温电性能。  相似文献   

7.
通过密封加热熔融的方式制备了添加CNT的活性炭/硫锂离子电池正极活性材料,并对其进行PEG包覆复合改性,制备了C-CNT/S(PEG)正极复合材料。X射线衍射(XRD)图谱显示复合材料具有较强的非晶结构,且单质硫分散在碳材料的微孔之中。扫描电镜(SEM)显示CNT均匀分散在复合材料之中,并形成了三维导电结构。放电比容量测试显示CNT的加入提高了复合材料的放电比容量;PEG包覆的复合改性材料首次放电比容量高达1371.1 m Ah/g,循环50次后放电比容量为662.8 m Ah/g。说明添加CNT及PEG包覆复合改性,使活性炭/硫正极材料的电化学性能显著提高。  相似文献   

8.
以乙酸盐为原料,采用喷雾干燥法制备层状α-NaFeO2结构的富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2及掺杂Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2。采用X射线衍射、扫描电镜、半电池充放电和电化学阻抗谱等方法研究材料的物相、结构、形貌及电化学性能。结果表明:Cr掺杂使材料的颗粒变粗,但不改变材料的结构,而使材料的层状特征更为明显;Cr掺杂后材料的电化学性能得到明显改善,电荷转移阻抗Rct从275.0降低到105.0,循环稳定性和倍率性能均有所改善,Li[Li0.2Ni0.15Cr0.1Mn0.55]O2材料1C倍率下的放电比容量为140.0 mA.h/g,循环50次后放电比容量为133.7 mA.h/g,远高于未掺杂Cr材料的比容量,未掺杂Cr材料在1C倍率下放电比容量为107.1mA.h/g,循环50次后放电比容量为102.1 mA.h/g。  相似文献   

9.
高功率脉冲反应磁控溅射技术具有放电等离子密度高、溅射材料离化率高和绕镀性好的特点,已被广泛用于金属氮化物强化涂层的设计制备,但受沉积过程实时在线诊断困难,决定涂层结构性能的关键等离子体特性尚不清晰。基于自主研制的高功率脉冲磁控溅射装备,采用 Langmuir 探针研究不同 N2流量下 CrNx涂层的反应等离子体放电特性与组分结构变化。固定溅射功率为 3 kW,随着 N2流量从 10 mL / min 增加至 75 mL / min,放电峰值功率密度和电子能量分布函数中的高能电子比例均呈现先上升后降低趋势,在 55 mL / min N2流量时达到最高值,其峰值功率密度为 320 W / cm2 。分析表明,当通入过量 N2时,靶中毒程度加剧,因表面生成 CrNx化合物的二次电子发射系数低于 Cr,近基体区电子密度从 3.9×1017 / m3逐渐下降至 2.2×1017 / m3 ,低密度离子入射降低了沉积粒子的热扩散迁移长度,使得涂层呈现 CrN(220)晶面择优柱状生长。  相似文献   

10.
铝被认为是下一代电池最有前途的负极材料之一, 本文中采用导电的Ti3O5作为外壳包覆纳米铝粉来制备Al@Ti3O5核壳结构材料, 并将其作为负极材料应用到双离子电池(DIB)中。使用中间相炭微球(MCMB)作为正极材料,Al@Ti3O5作为负极材料制作Al@Ti3O5-MCMB双离子电池。电池的放电平台可达4.5V, 在电流倍率0.5C下(电流基于正极石墨的理论比容量计算,1C=372mAhg-1)放电比容量达到130.6mAhg-1,比能量密度为278.8Whkg-1。并且在高倍率5C下循环1000次过程中容量基本保持110mAhg-1不变,循环后容量保持率达到92.9%。  相似文献   

11.
A recycling process involving chemical, mechanical, and electrochemical steps has been applied to recover cobalt from spent lithium ion batteries and resynthesize cathode active materials. LiCo1−xMnxO2 powders using Co salt including Mn from the leach liquor were resynthesized by solid-state reaction as cathode active materials. When the powder mixture with added Li salt was calcined at 950 °C for 8 hours, well crystallined LiCo1−xMnxO2 was successfully obtained. The LiCo1−xMnxO2 powders with a ratio of Co:Mn=10:1 has a discharge capacity of 156.3 mAh/g at a rate of 20 mA/g with no perceptible capacity loss, in sharp contrast to the pure LiCoO2 as active materials. The resynthesized LiCo1−xMnxO2 was proven to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.  相似文献   

12.
The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.  相似文献   

13.
Nanosize carbon coated LiFePO4 cathode material was synthesized by in situ polymerization. The as-prepared LiFePO4 cathode material was systematically characterized by X-ray diffraction, thermogravimetric-differential scanning calorimetry, X-ray photo-electron spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy techniques. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images revealed that the morphology of the LiFePO4 consists of primary particles (40-50 nm) and agglomerated secondary particles (100-110 nm). Each particle is evenly coated with an amorphous carbon layer, which has a thickness around 3-5 nm. The electrochemical properties were examined by cyclic voltammetry and charge-discharge testing. The as-prepared LiFePO4 can deliver an initial discharge capacity of 145 mAh/g, 150 mAh/g, and 134 mAh/g at 0.2 C, 1 C, and 2 C rates, respectively, and exhibits excellent cycling stability. At a higher C-rate (5 C) a slight capacity loss could be found. However after being charge-discharge at lower C-rates, LiFePO4 can be regenerated and deliver the discharge capacity of 145 mAh/g at 0.2 C.  相似文献   

14.
Orthorhombic structure FeF3 was synthesized by a liquid-phase method using FeCl3, NaOH and HF solution as starting materials, and the FeF3/V2O5 composites were prepared by milling the mixture of as-prepared FeF3 and the conductive V2O5 powder. The properties of FeF3/V2O5 composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge/discharge and cyclic voltammetry measurements. Results showed that the FeF3/V2O5 composites can be used as cathode material for lithium-ion battery. Electrochemical measurements in a voltage range of 2.0–4.5 V reveal that the addition of conductive V2O5 improves significantly the electrochemical performance of FeF3, and the FeF3/V2O5 composite prepared by milling for 3 h exhibits high discharge capacity and good cycle performance, and its discharge capacity maintains about 209 mAh g−1 at 0.1 C (23.7 mA g−1) after 30 cycles.  相似文献   

15.
Fluorine containing amorphous carbon films (CFx, 0.16 ≤ x ≤ 0.35) have been synthesized by reactive high power impulse magnetron sputtering (HiPIMS) in an Ar/CF4 atmosphere. The fluorine content of the films was controlled by varying the CF4 partial pressure from 0 mPa to 110 mPa at a constant deposition pressure of 400 mPa and a substrate temperature of 110 °C. The films were characterized regarding their composition, chemical bonding and microstructure as well as mechanical properties by applying elastic recoil detection analysis, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and nanoindentation. First-principles calculations were carried out to predict and explain F-containing carbon thin film synthesis and properties. By geometry optimizations and cohesive energy calculations the relative stability of precursor species including C2, F2 and radicals, resulting from dissociation of CF4, were established. Furthermore, structural defects, arising from the incorporation of F atoms in a graphene-like network, were evaluated. All as-deposited CFx films are amorphous. Results from X-ray photoelectron spectroscopy and Raman spectroscopy indicate a graphitic nature of CFx films with x ≤ 0.23 and a polymeric structure for films with x ≥ 0.26. Nanoindentation reveals hardnesses between ~ 1 GPa and ~ 16 GPa and an elastic recovery of up to 98%.  相似文献   

16.
以硫代氨基脲为氮源,用高温退火法对碳纳米管实现氮掺杂,利用PEG对掺氮复合材料(NCNT/S)进行外包覆。采用X射线衍射仪(XRD),扫描电子显微镜(SEM),X射线光电子能谱仪(XPS)对复合材料进行了表征。结果表明高温退火使氮有效地掺入碳纳米管中,而碳纳米管仍保持原本征形貌。电化学测试表明:掺氮后复合电极首次放电比容量明显提高,达到882.5 mAh·g~(-1),90次循环过后具有89.46%的容量保持量,而PEG包覆使掺氮复合电极首次放电比容量提高至1109.7 mAh·g~(-1),经过90次循环放电比容量仍保持在995.2 mAh·g~(-1)。这说明掺氮和PEG包覆均能很好地改善复合材料的电化学性能。  相似文献   

17.
以Al(NO3)3?9H2O为包覆原料,通过燃烧法制备得到LiNi0.03Co0.05Mn1.92O4@Al2O3正极材料。通过X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和透射电镜(TEM)等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安(CV)、交流阻抗(EIS)等测试分析材料的电化学性能。结果表明,Al2O3包覆没有改变LiNi0.03Co0.05Mn1.92O4的尖晶石型结构,包覆层厚度约10.6nm。LiNi0.03Co0.05Mn1.92O4@Al2O3正极材料电化学性能得到了明显改善,1 C和10 C倍率下初始放电比容量分别为119.9 mAh?g-1和106.3 mAh?g-1,充放电循环500次后容量保持率分别为88.4%和78.2%,而未包覆的LiNi0.03Co0.05Mn1.92O4在1 C和10 C倍率下初始放电比容量分别为121.2 mAh?g-1和104.0 mAh?g-1,500次循环后容量保持率分别为84.1%和67.6%。LiNi0.03Co0.05Mn1.92O4@Al2O3活化能为32.92 kJ?mol-1,而未包覆材料的活化能为36.24 kJ?mol-1,包覆有效降低了材料Li+扩散所需克服的能垒,提高了材料的电化学性能。  相似文献   

18.
将Co3O4、Li2CO3、Mg(OH)2 和Y2O3 按一定化学计量比称取并混合均匀后,采用高温固相法合成LiCo1-x-yMgxYyO2正极材料并探究了Mg-Y 共掺杂对钴酸锂高电压性能的影响.采用X 射线衍射(XRD)和扫描电镜(SEM)分别表征其晶体结构和形貌.LiCo1-x-yMgxYyO2正极材料高电压性能...  相似文献   

19.
The performance of multi-layer (1 − x) La0.8Sr0.2MnO3/x YSZ graded composite cathodes was studied as electrode materials for intermediate solid oxide fuel cells (SOFC). The thermal expansion coefficient, electrical conductivity, and electrochemical performance of multi-layer composite cathodes were investigated. The thermal expansion coefficient and electrical conductivity decreased with the increase in YSZ content. The (1 -x)La0.8Sr0.2MnO3/x YSZ composite cathode greatly increased the length of the active triple phase boundary line (TPBL) among electrode, electrolyte, and gas phase, leading to a decrease in polarization resistance and an increase in polarization current density. The polarization current density of the triple-layer graded composite cathode (0.77 A/cm2) was the highest and that of the monolayer cathode (0.13 A/cm2) was the lowest. The polarization resistance (Rp) of the triple-layer graded composite cathode was only 0.182 ω·cm2 and that of the monolayer composite cathode was 0.323 ω·cm2. The power density of the triple-layer graded composite cathode was the highest and that of the monolayer composite cathode was the lowest. The triple-layer graded composite cathode had superior performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号