首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
研究了Ti-1300合金经不同温度固溶+缓慢升温时效处理后的显微组织和拉伸性能.结果表明,在相变点之上和之下固溶+随炉升温时效处理后合金发生了不同的相变,对应的拉伸性能也有很大的不同.Ti-1300合金在相变点之上固溶处理后缓慢升温到500 ℃时效处理发生β→ω转变,试样强度很高,而塑性很差.Ti-1300合金在相变点之下固溶处理+随炉升温时效处理发生β→α转变,试样经随炉升温到570 ℃时效处理后的抗拉强度为1430 MPa,而延伸率也达到8%.  相似文献   

2.
采用SEM、TEM、XRD和硬度等技术对先固溶(840 ℃×0.5 h)后不同时效(460 ℃×4 h;320 ℃×15 min→460 ℃×4 h;320 ℃×10 min;460 ℃×10 min)热处理工艺的TC20合金试样进行了观察与表征,研究TC20合金的α相对时效过程中β→α相转变。结果表明:热轧态组织由α相与β相共同组成,固溶态组织相中生成了许多小尺寸α相。采用460 ℃×4 h进行处理试样内形成了片状分布的α相,采用320 ℃×15 min→460 ℃× 4 h处理试样内形成了具有更小长宽比的α相,并且该试样内的大部分α相尺寸均接近100 nm。两种时效方法形成的第二相都是α相,采用320 ℃×15 min→460 ℃×4 h处理具有尺寸更加细小的α相。当温度到达460 ℃时更多α相可以通过ω相进行形核,从而在β基体上形成致密均匀分布状态。采用320 ℃×15 min→460 ℃×4 h处理后合金中的ω相已不存在,同时析出了更多的α相,合金硬度高达503 HV,显著高于β基体的硬度,α相可以促进合金硬度的大幅提升。  相似文献   

3.
对BT14钛合金(Ti-5.43Al-3.11Mo-1.41V)进行不同温度固溶+时效热处理,研究了固溶温度对合金的显微组织、元素分布和硬度和压缩性能的影响。结果表明,在β相转变温度以下固溶后,随固溶温度上升,初生α相含量不断减少,初生α相和基体相(α′、α″或亚稳β相)中的Al含量均增加,Mo和V含量均下降,显微硬度上升。890、940、990 ℃固溶+540 ℃×6 h时效处理后,基体相分解形成弥散细小的α+β相,起到显著的强化作用,导致显微硬度整体提高,且随着固溶温度的升高,显微硬度和压缩屈服强度提高。  相似文献   

4.
研究了固溶、固溶后单时效以及固溶后双时效处理对Ti-4Al-5Mo-6Cr-5V-1Nb合金组织和力学性能的影响。结果表明,820℃下固溶0.5 h后,合金中的α相完全溶解;单/双时效合金的硬度均随时效时间增加先升高后降低;合金经300℃/8 h+500℃/8 h双时效处理后可达到4580 MPa的峰值硬度(HV),1462 MPa抗拉强度以及3.4%延伸率,其强度比原始合金高6%,也高于单时效合金。界面能计算结果表明ω相使α相形核的阻力降低50%,促进了α相的析出并细化α板条,从而提升合金的硬度,强度及塑性。  相似文献   

5.
采用规格为Ф4.0 mm×0.3 mm冷轧TLM(Ti-25Nb-3Zr-3Mo-2Sn,TLM))合金细径薄壁管材,分别在660,720℃进行固溶处理以及对720℃固溶态管材在510℃进行时效处理,利用金相显微镜、XRD、室温拉伸及断口观察分析了固溶、时效对管材组织、力学性能的影响。不同固溶态管材均为等轴组织,随着固溶温度升高,平均晶粒尺寸增大。相变点以上的固溶组织由β相和α'相组成,相变点以下固溶组织还有少量α相。时效过程中,针状的α相在晶界析出更快,合金相变化过程为β+α'→β+α'+α→β+α,时效时间大于3 h时,α相的析出使应力-应变曲线的"双屈服"特征减弱;随着时效时间的延长,抗拉强度、屈服强度及弹性模量升高,而延伸率降低。综合分析表明:720℃+510℃,3 h时效态具有较好的综合力学性能。  相似文献   

6.
β相区凝固的铸造γ-TiAl基合金的微观组织(英文)   总被引:1,自引:0,他引:1  
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)及差示扫描量热仪(DSC)研究Ti-43Al-4Nb铸态合金及其热处理态合金的显微组织以及相转变行为。结果表明:通过从β相区凝固的方法可以获得组织细小的铸态Ti-43Al-4Nb合金;凝固过程中γ晶能够直接从β相中形核,β相与γ相沿初始α晶界共存,有效地抑制了铸态Ti-43Al-4Nb合金晶粒的长大;Ti-43Al-4Nb合金在凝固过程中的相转变顺序为L→L+β→β→α+β→α+βr→α+γ+βr→(α2+γ)片层+γ+βr;经1250℃、16h热处理后,Ti-43Al-4Nb合金的显微组织与铸态组织相比有一定程度的粗化;由于Nb元素的充分扩散以及β相的非平衡状态,经过上述热处理过程后残余β相能够被完全消除。  相似文献   

7.
采用X射线衍射、透射电镜和力学性能测试等手段,系统研究了热-机械处理对亚稳βTi-25Nb-2Mo-4Sn合金微观组织和力学性能的影响。结果表明:由于合金中β稳定化元素含量不足,固溶处理后的合金中含有大量的α"马氏体,合金呈现低屈服强度。经过相同的时效处理(400℃/2 h),固溶态和冷轧态样品的相组成分别为β+ω和β+α相。冷变形引入的大量位错和晶界可有效抑制时效过程中ω相的形成,并促进α相的析出。冷轧态样品经475℃时效15 min后弹性模量为65 GPa,屈服强度和抗拉强度分别为1033和1113 MPa,实现了低模量和高强度的良好匹配。  相似文献   

8.
生物医用Ti-Nb-(Ta)-Zr合金的微观结构与性能   总被引:2,自引:0,他引:2  
采用显微硬度测试、X射线衍射分析和透射电子显微镜观察等方法,研究不同热处理后生物医用Ti-35Nb-5Ta-7Zr合金和Ti-35Nb-7Zr合金的显微硬度变化及微观组织特征,揭示Ta元素的添加对合金微观结构、时效析出序列及性能的影响。结果表明:Ti-35Nb-5Ta-7Zr合金比Ti-35Nb-7Zr合金具有更明显的时效强化效果;固溶处理(ST)后经300和600℃时效处理,Ti-35Nb-5Ta-7Zr合金的时效析出顺序可以描述为β+α″(ST)300℃→β+α600℃→β+α+等温ω,而Ti-35Nb-7Zr合金的时效析出顺序为β+α″+淬火ω(ST)300℃→β+α+等温ω600℃→β+α;Ta元素的添加抑制固溶处理过程中淬火ω相的析出,提高时效过程中等温ω相的析出温度。  相似文献   

9.
分析了不同固溶时效温度对Ti-6Al-4V-0.5Si合金抗拉强度、伸长率及显微组织的影响。结果表明,固溶处理后Ti-6Al-4V-0.5Si合金中存在较多的六方α′和斜方α″两种马氏体相和亚稳定相。时效处理后,马氏体相和亚稳定相分解再结晶得到分散的α+β相。综合分析表明,固溶时效工艺为950℃×30min(水冷,WQ)+480℃×4h(空冷,AQ),合金的综合性能最好,此时合金的抗拉强度和伸长率分别为745.6MPa和8.3%,比铸态合金分别提高了24.8%和36.0%。  相似文献   

10.
T4和T6热处理参数对AZ91+x%La镁合金组织和性能的影响   总被引:1,自引:0,他引:1  
在不同的T4和T6热处理参数下,对AZ91+x%La镁合金在的组织和硬度的变化进行了研究.结果表明,T4(410℃+16 h)固溶处理后,由于合金的大部分β相都溶入基体中,硬度比铸态时有所下降;T6( 170℃+24 h)时效处理后,基体上析出了大量晶界分布或在α相晶粒内的层片状β-Mg17Al12相,合金硬度得到显著提高,且AZ91 +0.16% La镁合金时效态试样的硬度最高,可达138 HV.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号