首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of organo‐soluble co‐polyimides (co‐PIs) were successfully synthesized from 3,3′,4,4′‐benzophenonetetracarboxylic‐dianhydride (BTDA), 1,4‐bis‐(4‐amino‐2‐trifluoromethyl‐phemoxy)‐benzene (p‐6FAPB) and 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (BIA) via the one‐pot high‐temperature polymerization using N‐methyl‐2‐pyrrolidone (NMP) as the solvent. The imidization reaction of poly(amic acid)s in solution state was discussed in detail by attenuated total reflectance‐Fourier transform infrared spectra (ATR‐FTIR), and the results illustrate that the introduced benzimidazole moiety has a catalytic activity on the imidization process. The number‐average molecular weights and polydispersity index of these PIs measured by gel permeation chromatography range from 1.11 × 105 to 2.20 × 105 and 1.82 to 3.84, respectively. The prepared co‐PIs exhibit sufficient solubility in some polar solvents and high optical transparency. Meanwhile, these co‐PI films show good mechanical performances, and the strength and modulus of the sample with the molar ratio of p‐6FAPB/BIA = 5/5 reach 183 MPa and 4.71 GPa, respectively. Moreover, the obtained co‐PIs possess high glass transition temperatures (Tg) (above 260 °C) and good thermal stability with 5% weight loss temperature in the range of 502–531 °C in the nitrogen atmosphere. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45497.  相似文献   

2.
Poly[1,3‐bis(aminomethyl)cyclohexaneoxamide] (PBAC2) was synthesized using 1,3‐bis(aminomethyl)cyclohexane (BAC) and dibutyl oxalate (DO) via spray/solid‐state polycondensation (SSP). The structure of the synthesized polyoxamide was confirmed by 1H‐nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. The weight average molecular weight (Mw) of the polyoxamides prepared was 1.35 × 105. The polyoxamides showed excellent thermal properties with glass transition temperature (Tg) of 150 °C, melting temperature (Tm) of 318 °C, crystallization temperature(Tc) of 253 °C, and initial degradation temperature (Td) of 417 °C suggesting higher thermal stability than commercial polyamide 6 (Td = 378 °C). Kinetic studies of PBAC2 predicted a two‐dimensional crystal growth. X‐ray diffraction powder diffraction suggested that the polymer has high crystallinity. A saturated water absorption of 2.8 wt % was recorded for the new polyoxamide, giving it a competitive edge for applications in civil aviation, reinforced plastics, and electronics industry where precise dimensional stability and high thermal resistance properties are a priority. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46345.  相似文献   

3.
A novel aromatic diamine monomer, 4‐(3,5‐dimethoxyphenyl)‐2,6‐bis(4‐aminophenyl)pyridine (DPAP) was successfully synthesized by 4′‐nitroacetophenone and 3,5‐dimethoxybenzaldehyde as raw material. The structure of DPAP was confirmed by Fourier transform infrared, nuclear magnetic resonance, and mass analysis. A series of polyimides (PIs) were obtained by polycondensation with various dianhydrides via the conventional two‐step method. These PIs showed good solubility in organic solvents. They also presented high thermal stability, the glass transition temperatures (Tg) of polymers were in the range of 325–388 °C, and the temperature at 10% weight loss was in the range of 531–572 °C. Furthermore, these polymers also exhibited outstanding hydrophobicity with the contact angles in the range of 89.1°–93.5°. Moreover, the results of wide‐angle X‐ray diffraction (WAXD) confirmed these polymers showed amorphous structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45827.  相似文献   

4.
Three novel polyimides (PIs) having pendent 4‐(quinolin‐8‐yloxy) aniline group were prepared by polycondensation of a new diamine with commercially available tetracarboxylic dianhydrides, such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs were characterized by FTIR, 1H NMR, and elemental analysis; they had high yields with inherent viscosities in the range of 0.4–0.5 dl g−1, and exhibited excellent solubility in many organic solvents such as N,N‐dimethyl acetamide, N,N′‐dimethyl formamide, N‐methyl pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. These PIs exhibited glass transition temperatures (Tg) between 250 and 325° C. Their initial decomposition temperatures (Ti) ranged between 270 and 450°C, and 10% weight loss temperature (T10) up to 500°C with 68% char yield at 600°C under nitrogen atmosphere. Transparent and hard polymer films were obtained via casting from their NMP solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
4,4'‐Di(benzimidazolyl)benzene sulfone, as the monomer, is very readily available by the reaction of 4,4'‐dicarboxydiphenyl sulfone with o‐phenylenediamine, and poly(arylene benzimidazole) sulfone (PABIS) has been synthesized by the condensation polymerization of bis(4‐fluorophenyl) sulfone with di(benzimidazolyl)benzene sulfone via an N–C coupling reaction. The structure of the polymer was characterized by Fourier transform IR spectroscopy, 1H NMR spectroscopy and elemental analysis, and the results showed agreement with the proposed structure. DSC and thermogravimetric measurements showed that PABIS possesses a high glass transition temperature (Tg = 321 °C) and good thermal stability with high decomposition temperature (Td > 530 °C). Additionally, PABIS exhibits good solubility in most polar organic solvents. Based on the good chemical and physical properties, hollow PABIS microspheres with diameters in the range 0.3–1.8 mm were prepared by the micro‐liquid technique and the double‐layer latex technique. A new double T‐channel droplet generator was developed for continuous fabrication of controlled‐size hollow PABIS microspheres. The structures of the hollow PABIS microspheres were characterized, and they possessed equal wall thickness and good spherical symmetry. © 2013 Society of Chemical Industry  相似文献   

6.
A novel tetra‐functional epoxy monomer with mesogenic groups was synthesized and characterized by 1H‐NMR and FTIR. The synthesized epoxy monomer was cured with aromatic amine to improve the thermal property of epoxy/amine cured system. The glass transition temperature (Tg) and coefficient of thermal expansion (CTE) of the cured system were investigated by dynamic mechanical analysis and thermal mechanical analysis. The properties of the cured system were compared with the conventional bisphenol‐A type epoxy and mesogenic type epoxy system. The storage modulus of the tetra‐functional mesogenic epoxy cured systems showed the value of 0.96 GPa at 250 °C, and Tg‐less behavior was clearly observed. The cured system also showed a low CTE at temperatures above 150 °C without incorporation of inorganic components. These phenomena were achieved by suppression of the thermal motion of network chains by introduction of both mesogenic groups and branched structure to increase the cross linking density. The temperature dependency of the tensile property and thermal conductivity of the cured system was also investigated. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46181.  相似文献   

7.
Positive temperature coefficient to resistivity (PTCR) characteristics of polystyrene (PS)/Ni‐powder (40 wt%) composites in the presence of multiwall carbon nanotubes (MWCNTs) has been investigated with reference to PS/carbon black (CB) composites. The PS/CB (10 wt%) composites showed a sudden rise in resistivity (PTC trip) at ≈110°C, above the glass transition temperature (Tg) of PS (Tg ≈95°C). Interestingly, the PTC trip temperature of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites appeared at ≈90°C (below Tg of PS), indicating better dimensional stability of the composites at PTC trip temperature. The PTC trip temperature of the composites below the Tg of matrix polymer (PS) has been explained in terms of higher coefficient of thermal expansion (CTE) value of PS than Ni that led to a disruption in continuous network structure of Ni even below the Tg of PS. The dielectric study of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites indicated possible use of the PTC composites as dielectric material. Dynamic mechanical analysis (DMA) and thermogravimetric analysis studies revealed higher storage modulus and improved thermal stability of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites than the PS/CB (10 wt%) composites. POLYM. COMPOS., 33:1977–1986, 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
3,6‐bi(4‐fluorobenzoyl)‐N‐methylcarbazole and 3,6‐bi(4‐fluorobenzoyl)‐N‐ethylcarbazole were synthesized and used to prepare poly(arylene ether ketone)s (PAEKs) with high glass transition temperatures (Tg) and good solubility. High molecular weight amorphous PAEKs were prepared from these two difluoroketones with hydroquinone, phenolphthalein, 9,9‐bis(4‐hydroxyphenyl)fluorene and 4‐(4‐hydroxylphenyl)‐2,3‐phthalazin‐1‐one, respectively. All these polymers presented high thermal stability with glass transition temperatures being in the range 239–303 °C and a 5% thermal weight loss temperature above 460 °C. Compared with the Tg of phenolphthalein‐based PAEK (PEK‐C), fluorene‐based PAEK (BFEK) and phthalazinone‐based PAEK (DPEK) not containing a carbazole unit, these polymers presented a 30–50 °C increase in Tg. Meanwhile, PAEKs prepared from N‐ethylcarbazole difluoroketone showed good solubility in ordinary organic solvents, and all polymers exhibited excellent resistance to hydrochloric acid (36.5 wt%) and sodium hydroxide (50 wt%) solutions. In particular, phthalazinone‐based PAEK bearing N‐ethylcarbazole afforded simultaneously a Tg of 301 °C with good solubility. Tensile tests of films showed that these polymers have desirable mechanical properties. The carbazole‐based difluoroketones play an important role in preparing soluble PAEKs with high Tg by coordinating the relationship between chain rigidity resulting from the carbazole unit and chain distance from the side alkyl. © 2014 Society of Chemical Industry  相似文献   

9.
2,2′‐Position aryl‐substituted tetracarboxylic dianhydrides including 2,2′‐bis(biphenyl)‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride and 2,2′‐bis[4‐(naphthalen‐1‐yl)phenyl)]‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride were synthesized. A new series of aromatic polyimides (PIs) were synthesized via a two‐step procedure from 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride and the newly synthesized tetracarboxylic dianhydrides monomers reacting with 2,2′‐bis[4′‐(3″,4″,5″‐trifluorophenyl)phenyl]‐4,4′‐biphenyl diamine. The resulting polymers exhibited excellent organosolubility and thermal properties associated with Tg at 264 °C and high initial thermal decomposition temperatures (T5%) exceeding 500 °C in argon. Moreover, the fabricated sandwich structured memory devices of Al/PI‐a/ITO was determined to present a flash‐type memory behaviour, while Al/PI‐b/ITO and Al/PI‐c/ITO exhibited write‐once read‐many‐times memory capability with different threshold voltages. In addition, Al/polymer/ITO devices showed high stability under a constant stress or continuous read pulse voltage of ? 1.0 V. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Positive temperature coefficient of resistivity (PTCR) behavior of poly(methyl methacrylate) PMMA/silver (Ag)‐coated glass bead composites has been investigated with reference to the conventional PMMA/carbon black (CB) composites. The PMMA/CB composites showed a sudden rise in resistivity (PTC trip) at 115°C, close to the glass transition temperature (T g, 113°C) of the PMMA. However, the PTC trip temperature (92°C) of PMMA/Ag‐coated glass bead composites was appeared well below the T g of PMMA. The room temperature resistivity and PTC trip temperature of the composites were also very much stable upon thermal cycling. Addition of 1 phr of nanoclay increased the PTC trip temperature of PMMA/CB composites to 120°C, close to the T g (118°C) of PMMA/clay nanocomposites, while PMMA/clay/Ag‐coated glass bead nanocomposites showed the PTC trip at 98°C. We proposed that the mismatch in coefficient of thermal expansion (CTE) between PMMA and glass beads played a key role that led to a disruption in continuous network structure of Ag‐coated glass beads even at a temperature well below the T g of PMMA. The decrease in dielectric permittivity of PMMA/Ag‐coated glass bead composites on increasing frequency indicated possible use of the PTC composites as dielectric material. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

11.
The morphology, thermal, mechanical, and dielectric properties of high‐performance poly(etheretherketone)/Si3N4 nanocomposites fabricated by hot pressing were investigated. It was found that the coefficient of thermal expansion (CTE) and dissipation factor decreased significantly with increasing Si3N4 content, whereas thermal stability was affected slightly. A nanocomposite with 30 wt% Si3N4 exhibited about 45% and 23% decrease in CTE, below and above Tg, respectively. The glass‐transition temperature (Tg) was increased up to 20°C. Microhardness was improved by 20% at 10 wt% Si3N4 content and thereafter it improved slightly. Modified rule of mixture with β = 0.1 or Halpin–Tsai model with ξ = 4 fits well the microhardness. The dielectric constant and loss factor of the nanocomposites are quite low, and thermal stability is much higher compared with commercial products. Various models were also used to correlate CTE and dielectric constant. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

12.
A series of ester‐linked tetracarboxylic dianhydrides (TA‐X) were synthesized from trimellitic anhydride chloride and 4,4′‐biphenol analogs containing different numbers and positions of methyl substituents. Aromatic poly(ester imide)s (PEsIs) were polymerized from TA‐Xs and 2,2′‐bis(trifluoromethyl)benzidine to investigate the film properties systematically. A significant substituent effect on the target properties (Tg, optical transparency, the linear coefficient of thermal expansion (CTE) and ductility) was observed. A PEsI containing 2,2′,3,3′,5,5′‐hexamethyl‐substituted p‐biphenylene units was chemically imidized in a homogeneous state. It was highly soluble at room temperature, even in less hygroscopic non‐amide solvents such as cyclopentanone (CPN), and provided a stable CPN solution with a high solid content. The CPN‐cast PEsI film was almost colorless as suggested from the rather low yellowness index (3.2), high light transmittance at 400 nm (71.5%) and very low haze (1.15%). This PEsI film also had a high Tg (294 °C, determined by thermomechanical analysis) in addition to a low CTE (21.7 ppm K?1), moderate film ductility and very low water uptake. A structural modification of the PEsI by copolymerization with a tetracarboxylic dianhydride with a rigid/linear structure was effective in further reducing the CTE while maintaining the other excellent target properties. Thus, some of the PEsIs developed in this work are promising candidates as novel plastic substrates for use in image display devices. © 2017 Society of Chemical Industry  相似文献   

13.
Novel high‐performance copolyimide (co‐PI) fibers containing benzimidazole and benzoxazole ring in the main chain were prepared by a two‐step spinning via the poly(amic acid)s. Effects of the incorporated benzimidazole and benzoxazole units on the micro‐structure and properties of co‐PI fibers were investigated. Fourier transform infrared (FTIR) results indicated that hydrogen bonding is formed in the co‐PI fibers. The co‐PI fibers exhibited discernible crystallization peaks at 14°~15° and 23°~26° (2θ), showing crystalline‐like structure. Moreover, the packing type of benzimidazole‐imide units determined the macromolecules packing of co‐PIs. It was amazedly found that the co‐PI fibers exhibited higher tensile strength and initial modulus than those of corresponding homo‐PI fibers, reaching tensile strength of 2.2–2.6 GPa, initial modulus of 99.1–113.2 GPa. The results of dynamic mechanical analysis (DMA) indicated co‐PI2 fiber had a positive Tg deviation due to the presence of strong intermolecular hydrogen bonding between benzimidazole‐imide and benzoxazole‐imide units, which maybe lead to the effective stress transfer between benzimidazole‐imide units and benzoxazole‐imide units. In addition, the obtained PI fibers exhibited excellent thermal properties with the 10% weight loss temperatures under N2 in the range of 574–585°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42001.  相似文献   

14.
A series of block and random copolyimide films were synthesized from various molar ratios of two diamines, rigid 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (APBI) and flexible 4,4′‐oxydianiline (ODA) by polycondensation with dianhydride 3,3′,4,4′‐biphenyltetracarboxylic dianhydride. The contents of APBI ranged from 10 to 60 mol % in copolyimides. The copolyimide films obtained by thermal imidization of poly(amic acid) solutions, were characterized by TMA, DMA, TGA, DSC, wide‐angle X‐ray diffraction, FTIR, tensile testing, water uptake (WU), and dielectric constant measurements. Rigid heterocyclic diamine APBI with interchain hydrogen bonding capability, led to low coefficient of thermal expansion (CTE), high Tg, high thermal stability and better mechanical properties. Increasing the APBI mol % caused a gradual decrease in the CTE and increase in Tg, thermal stability and tensile strength properties of the copolyimides films. Moreover, significantly enhanced thermal and mechanical properties of the block copolyimides were also found as compared to random copolyimides. The block copolyimide with APBI content of 60 mol %, achieved excellent properties, that is, a low CTE (4.7 ppm/K), a high Tg at 377°C, 5% weight loss at 562°C and a tensile strength at 198 MPa. This can be interpreted because of comparatively higher degree of molecular orientation in block copolyimides. These copolyimides also exhibited better dielectric constant and WU. This combination of properties makes them attractive candidates for base film materials in future microelectronics. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
A series of thermally stable poly(arylene ether ketone)s (PAEKs) bearing benzimidazole structure in the main chains, named poly(arylene ether ketone‐benzimidazole)s (PAEK‐BIs), were directly synthesized by polycondensation of dimethyl bisphenol, dibenzimidazole bisphenol, and difluorobenzophenones. By systematically varying the amount ratio of two kind of bisphenols, the content of benzimidazole moiety in the backbone was controlled straightforwardly. The prepared amorphous polymers were characterized in terms of Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, thermal, dielectric, and gas transport properties. Evaluation of solubility reveals that PAEK‐BIs with >60% content of benzimidazole units could be soluble in commonly used organic solvents. Also polymers containing content‐tunable benzimidazole show high glass‐transition temperatures (Tg's, 157–319°C) and excellent thermal stability (e.g., temperature of 5% weight loss, above 438°C in air). Dielectric constants of PAEK‐BIs measured at 25°C are all less than 2.66 in the frequency range of 0.1–50 kHz. For dense films, the ideal gas selectivity and permeability coefficients could be compared with that of commercial Ultem 1000 membrane, which indicate that the PAEK‐BIs are potential to be used for gas separation membrane material. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41289.  相似文献   

16.
The effect of poly(caprolactone) (PCL) on the positive temperature coefficient of resistivity characteristics of polycarbonate (PC)/nickel (Ni)‐coated graphite (40 wt%) composites was investigated. The PTC trip temperature of PC/Ni‐coated graphite composites appeared at 155°C. On addition of PCL to PC/Ni‐coated graphite composites, the PTC trip temperature reduced to 125°C, well below the Tg of the PC (∼147°C), as well as the PC/PCL (∼136°C) blend. It is noteworthy that the observed PTC effect for PC/PCL (8 wt%)/Ni‐coated graphite (40 wt%) composites is highly reproducible during many heating cycles. The coefficient of thermal expansion (CTE) of PC was increased in presence of PCL. Thus, the mismatch in CTE of the PC and Ni‐coated graphite at a temperature well below the Tg of PC was enough to disrupt the continuous network structure that increased the resistivity of the composites. Storage modulus of PC/PCL/Ni‐coated graphite composites was higher than PC/Ni‐coated graphite composites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
A novel bismaleimide (DOPO‐BMI) with unsymmetrical chemical structure and DOPO pendant group has been prepared. The particular molecular structure makes DOPO‐BMI show an intrinsic amorphous state with a Tg about 135°C and excellent solubility in most organic solvents, which is beneficial to the processability of bismaleimide composite materials. A series of bismaleimide‐triazine (BT) resins have been prepared based on DOPO‐BMI and 2,2‐bis(4‐cyanatophenyl)propane at various weight ratios. The prepared BT resins show outstanding solubility in organic solvent and low viscosity about 10–671 mPa s at 180°C. The cured BT resins exhibit high glass transition temperature (Tg) over 316°C. As the weight ratio of DOPO‐BMI increases to 80% (BT80), the Tg can rise to 369°C (tan δ). The cured BT resins also show good thermal stability with the 5% weight loss temperature over 400°C under both nitrogen and air atmosphere. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42882.  相似文献   

18.
This article reports the synthesis and characterization of a series of new aromatic polyimides (PIs) having bulky tert butyl group containing propeller shaped triphenylamine unit in its structure. The PIs were prepared by the reaction of 4,4′‐diamino‐4″‐(2,4,6‐tri‐tert‐butylphenoxy) triphenylamine with different commercially available aromatic dianhydrides through the formation of corresponding poly(amic acid)s and subsequent thermal cycloimidization. The PIs showed high glass transition temperature (Tg up to 270 °C) and thermal stability (Td10 up to 475 °C). The PI membranes showed good mechanical properties with tensile strength up to 70 MPa, excellent separation performance [P(CO2) = 100.8, P(O2) = 40.4 barrer], and good permselectivity [P(CO2)/P(CH4) = 50.9, P(O2)/P(N2) = 7.6]. The membranes exhibited extremely high solubility selectivity for the CO2/CH4 gas pair due to the strong affinity between CO2 and nitrogen atoms of tertiary amine in triphenylamine. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46658.  相似文献   

19.
The fluorinated epoxy resin, 2,2‐bisphenol hexafluoropropane diglycidyl ether (DGEBHF) was synthesized through a two‐step procedure, and the chemical structure was confirmed by 1H n uclear magnetic resonance (NMR), 13C NMR, and Fourier transform infrared (FTIR) spectra. Moreover, DGEBHF was thermally cured with methyl hexahydrophthalic anhydride (MHHPA). The results clearly indicated that the cured DGEBHF/MHHPA exhibited higher glass transition temperature (Tg 147°C) and thermal decomposition temperature at 5% weight loss (T5 372°C) than those (Tg 131.2°C; T5 362°C) of diglycidyl ether of bisphenol A (DGEBA)/MHHPA. In addition, the incorporation of bis‐trifluoromethyl groups led to enhanced dielectric properties with lower dielectric constant (Dk 2.93) of DGEBHF/MHHPA compared with cured DGEBA resins (Dk 3.25). The cured fluorinated epoxy resin also gave lower water absorption measured in two methods relative to its nonfluorinated counterparts. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2801–2808, 2013  相似文献   

20.
The remarkable safety characteristics of the high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) are revolutionizing the design and deployment of nuclear weapons. Kel-F 800 is used as the binder to obtain high-density, mechanically stable billets of TATB that can be machined into desired shapes. However, repeated thermal cycling between − 54 °C and 74 °C of high density, pure, and plastic-bonded TATB billets causes a permanent volume expansion (growth) of about 1.5 vol% to 2.0 vol%. Debonding of the Kel-F 800 binder occurs during growth, causing a reduction in the mechanical properties of the plastic-bonded explosive. The coefficient of thermal expansion (CTE) of these TATB billets between ambient temperature and 74 °C is 67.0 × 10−6/°C. TATB undergoes a secondary mechanical relaxation just above room temperature, coinciding with the onset of a high CTE, above the glass transition temperature (Tg) of Kel-F 800. Thus, by judicious selection of a high-Tg binder, we have essentially eliminated growth, stopped the degradation of mechanical properties after thermal cycling, suppressed the secondary mechanical relaxation, and lowered the CTE to 50.0 × 10−6/°C between ambient temperature and 74 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号