首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
随着大规模风电接入电网,风电功率的随机性与波动性以及多风电场出力的相关性使得电力系统的运行与调度面临着新的挑战。引入经验Copula函数表征多风电场联合出力分布;对风电的波动性进行建模,利用ksdensity函数拟合风电功率波动量,通过逆变换抽样的方法生成符合风电随机性和波动性的场景集合;生成基于经验Copula函数的多风电场出力动态场景,并将其应用于含多风电场的电力系统随机机组组合问题的求解。算例结果验证了所提风电波动性建模方法的有效性与动态场景生成方法的可行性,同时提高了含多风电场电力系统运行的经济性。  相似文献   

2.
针对风电出力的不确定性特点,提出一种场景分析方法,通过生成风电的时序场景集刻画其出力的不确定性信息。将场景分析方法分为场景生成部分和场景消减部分。在场景生成部分,构建自适应预测箱描述不同预测出力幅值下预测误差的概率分布,结合多元标准正态分布和逆变换技术得到满足自相关性的初始场景集;至于场景消减方面,改进传统K-means算法提高聚类算法的聚类水平和聚类稳定性。实例分析表明,该场景分析技术对风电概率信息的刻画具有较高的准确性,适用于涉及大规模风电并网的电力系统调度问题。  相似文献   

3.
相邻风电场出力由于地理环境与气候条件相似而具有较强的相关性,因此构建风电相关性模型以及合理的调度模型对大规模风电并网意义重大。基于混合Copula函数和连续马尔科夫链模型构建多维时序风速相关性模型,并根据抽样产生的大量模拟场景聚类生成典型场景;构建基于场景分析的机组组合两阶段调度模型,以得到满足所有典型场景的机组启停和各场景的调度方案,并根据典型场景与模拟场景的偏差基于机会约束理论设定模型中的风电备用需求系数,以提高系统运行的可靠性与经济性。以10机2风电场系统为例进行仿真分析,结果验证了所建模型的有效性。  相似文献   

4.
随着风电利用率的大规模提高,应用典型场景法应对风电机组出力的不确定性具有重要意义。针对多风电场出力之间的时空相关性提出一种改进的场景生成与缩减方法,并提出评价方法来检验生成场景的质量。该方法应用指数函数法构建体现风电时间相关性的多元变量协方差矩阵,应用Copula函数建立多风电场空间相关性模型,通过对随机数与历史数据的累积概率分布函数进行时空相关非线性变换与等概率逆变换生成大量初始场景。改进K-means聚类方法,通过手肘法与聚类有效性指标综合确定最优聚类数目后,缩减得到代表性时空相关风电场景。最后通过4项评价指标,对生成场景的波动性、相关性、可靠性等进行质量检验。算例分析表明,与其他方法相比,所提方法生成场景的波动性、爬坡情况和时空相关性均与历史数据更贴合,具有更高的实测值覆盖率。  相似文献   

5.
含多个风电场的场景生成技术可为电力系统中长期规划和运行提供所需基础数据。为在场景生成过程中计入多风电场风电出力的时空相关性,提出两阶段场景生成方法:在第一阶段,采用Copula函数对多个风电场出力的空间相关性建模,获得多风电场出力的初始场景;在第二阶段,运用随机微分方程对风电场出力波动随机性建模,通过重构初始风电出力场景,使得最终获得的场景中风电序列较好地保留原始序列的时间相关性。为评估生成场景的有效性,构建场景有效性评价指标体系;引入多重分形去趋势波动分析方法,提供刻画风电序列的自相关特性和动态波动特性的多维度指标。以某区域风电场为例,生成风电季度出力场景,结果表明所提方法能够复现原始风电序列的时空相关性。  相似文献   

6.
随着大规模风电接入电网,风电功率的不确定性使得电力系统的运行与调度面临着新的挑战。针对风电功率的不确定性,本文提出了基于通用分布的风电功率动态场景生成方法,将风电的不准确性转化为确定性模型。本文首先利用通用分布良好的拟合特性去近似表征风电功率的实际分布,然后对风电的波动性进行建模,通过逆变换抽样的方法生成大量既符合风电的随机性又符合波动性的场景。为了验证所提方法的有效性,本文从场景生成的速度和精确程度方面进行了比较。以实际风电数据为基础的仿真算例验证了所提的基于通用分布的风电功率出力动态场景生成方法的可行性。  相似文献   

7.
风-光并网背景下,为准确评估风-光相关性出力及系统输电可靠性裕度(transmission reliability margin,TRM),提出了一种计及风-光出力时变相关特性的TRM评估方法。首先,计及风-光出力存在的时变相关特性和季节特性,提出了基于时变Copula函数的风-光24 h联合出力场景生成方法,所生成的场景为准确评估TRM提供基础。然后,在考虑TRM时间尺度特性的同时,引入GlueVaR度量系统存在的传输能力缺额风险,进而构建了区分决策者不同风险偏好的TRM期望净收益模型。最后,以风-光场景集为基础,利用序贯蒙特卡洛模拟方法生成系统时序运行场景集,结合IEEE-RTS系统利用优化算法求解模型。与以往方法相比,所提评估方法不仅提高了风-光出力场景生成的精度,而且保障了系统的可靠经济运行,实现了TRM的差异化评估。  相似文献   

8.
随着风电渗透率的日益提高,如何有效地描述风电出力的不确定性成为了配电网运行和规划所面临的巨大挑战,为此,提出一种基于隐式最大似然估计的风电出力场景生成方法。针对风电出力曲线的数据特征,设计适用于风电出力场景生成的损失函数和网络结构。通过无监督训练使得场景生成器能够学习到高斯噪声与风电出力场景之间的映射关系。仅需调节模型中相关的参数,采用所提方法就能够生成不同时间尺度的风电出力场景。仿真结果表明,所提方法的预测区间平均宽度和预测区间覆盖率均优于现有的生成对抗网络,且所提方法对于不同的风电场具有一定的普适性。  相似文献   

9.
风电场发电功率有很强的不确定性和相关性,影响电力系统不确定潮流分布情况。为了能准确掌握电力系统潮流状态的区间分布特性,区间潮流作为不确定潮流计算工具,需要考虑风电的不确定性和相关性。采用联合采样区域的相关角量化风电出力的区间相关性,构建了考虑风电相关性的区间潮流(Interval Power Flow,IPF)模型,并提出了一种基于仿射变换的最优场景算法(Optimal Scenario Algorithm with Affine Transformation,OSA-AT)加以求解。该算法利用仿射变换先将相关的风电出力区间分布转化为独立的区间变量,然后应用最优场景法将区间潮流转化为一系列确定非线性优化问题,进而采用内点法计算获得潮流状态量的最大值和最小值,即区间分布。IEEE-14和IEEE-118系统的计算结果表明,所提方法可以精确处理区间变量相关性,且与蒙特卡罗方法(Monte Carlo, MC)相比,其计算效率可提高数十倍。  相似文献   

10.
以风电和光伏为代表的可再生能源渗透率不断增加,其出力不确定性导致的大规模时序场景给电力系统的优化分析带来很高的计算复杂度。以场景削减技术精准刻画区域风电、光伏出力特性是解决以上问题的有效方法之一。提出一种基于聚类与优化算法相结合的可再生能源场景削减方法。首先对数据进行清洗、降噪等预处理,其次利用肘部法则与轮廓系数判断风电、光伏类别个数并进行聚类。然后,利用粒子群与遗传算法分别提取风电、光伏典型出力曲线,并对两种算法结果进行对比,从而生成典型场景。算例分析以欧洲输电系统运营商Amprion提供的2015年1月1日至2019年12月31日风电、光伏出力数据为研究对象,利用所提方法求得的出力曲线可以有效反映该区域风电、光伏出力典型场景,为后续电力系统规划、运行优化等问题提供数据支撑。  相似文献   

11.
场景分析是电网运行规划中的一项重要技术,也是一个基础性工作。为有效分析风电出力的场景特征,本文基于风速的不确定特性对场景分析问题进行建模,构建了基于拉丁超立方抽样(LHS)与后向缩减法的场景分析模型,为快速分析任意时段的风电出力提供重要依据。本文首先分析风速特征,归纳同一时间点风速符合的概率分布;接着拟合各时刻威布尔分布的参数值,提出了一套基于LHS的场景生成方法;然后构建后向缩减场景缩减模型,使得到的若干条曲线能够更大程度表征原始场景的变化特征。最后,通过算例分析对比验证了本文所提方法的有效性与准确性。  相似文献   

12.
基于情景分析的配电网运行风险预警方法   总被引:3,自引:0,他引:3  
针对已有电网运行风险评估研究不能直接应用于配电网运行风险预警的现状,结合情景分析和电网风险评估的理论,建立了一套多因素影响下的配电网运行风险预警方法。首先,应用情景分析理论,对影响配电网运行风险的因素进行风险情景界定,建立完整的未来情景集;接下来应用电网风险评估理论,建立了一套全面的风险指标进行配电网运行情景风险表达;最后算例证明本方法能够展现配电网运行中可能面临的多种情景下的风险变动情况,从而对运行风险进行科学预警。  相似文献   

13.
微电网经济运行涉及对大量场景和方案的分析评价,区域内风电/光伏出力和负荷变化的时序性、周期性和不确定性给微电网运行带来影响。提出一种典型场景分析方法,对计算周期内的大量风电/光伏出力和负荷原始数据进行同步聚类划分,形成能够反映计算周期内历史数据特征的典型场景集;建立包含多种分布式电源和储能单元的微电网系统经济运行优化模型;针对某微电网区域,比较典型时序场景、全周期时序场景、周期内缩减场景3类场景数据的经济运行优化结果,验证所提方法的有效性。  相似文献   

14.
风电出力对电力系统运行的影响存在复杂的非线性,现有处理风电随机性的风电场景模型难以保证风电场景与电力系统优化运行保持一致,为此提出含多风电场的电力系统无功/电压灵敏度场景分析方法。首先利用网损/电压灵敏度计算方法计算多风电场相关性出力样本的网损/电压灵敏度,再基于主成分分析构建联合网损/电压灵敏度特征空间,并在此基础上进行场景聚类,得到多风电场网损/电压灵敏度场景。将某2个风电场的实际数据接入IEEE 30节点系统中分别进行传统风电场景分析和所提灵敏度场景分析,验证了所提方法的有效性和优越性。  相似文献   

15.
由于风电的随机性和不确定性,使得风电大规模并网后电力系统的安全稳定运行难度增大,因此有必要对风电经柔直并网系统的随机最优潮流展开深入研究。提出一种计及换流器损耗和风电随机性的风电经柔性直流并网的随机最优潮流模型。首先,建立风电功率数学模型和计及换流器损耗的VSC-HVDC数学模型,考虑风电并网时换流站的不同控制方式;其次,利用场景法模拟风电功率的不确定性,并通过Kantorovich距离的场景削减技术提高计算效率,构建风电经柔性直流并网系统随机最优潮流模型,采用内点法对优化模型进行求解,利用统计学方法计算目标函数的数字特征;最后,以修改的WECC 2机5节点系统和IEEE-118节点系统为例进行仿真分析,验证所提出优化模型的合理性和有效性。  相似文献   

16.
场景分析法在用于描述可再生能源出力不确定性时,不仅能表征预测风/光功率等随机变量在时间—功率空间上的概率分布,还能进一步反映这些随机波动在时序上的相关性。多场景分析中普遍存在场景维数灾问题,在备用优化中更遭遇控制措施组合爆炸问题,加剧了求解的困难。场景削减有利于场景分析法的实用化,然而现有场景削减方法不能确保小概率高风险场景不被剪除,继而引发风险泄露问题。文中提出一种计及场景集剩余风险下逐步筛选场景的多场景备用优化方法,将场景削减与优化过程融合于一体。相比于传统的"先场景削减、再优化"的思路,所提出的方案能自适应地选取待优化场景集,且能有效识别小概率高风险场景。通过与基于传统场景削减方法的混合整数线性规划方法的对比,所提出的多场景优化方法在平衡优化效果与计算效率上具有显著优势。  相似文献   

17.
全球范围内由小概率、高影响的极端事件导致的大停电事故不断增加,引起了学术界对多微电网系统灾害应对能力的广泛关注.为了提高多微电网系统应对极端事件的能力,文中基于体系架构提出了一种新的多微电网两阶段能量管理调度方法.通过充分利用系统内的各种发电资源,实现多微电网系统与主网断开连接情况下的供电最大化.同时,文中也提出采用评估多微电网系统应对极端事件能力的韧性指标体系,通过与传统多微电网能量管理方法的对比,验证了所提方法的有效性.  相似文献   

18.
严重自然灾害事件会给电力系统运行安全带来巨大风险,需要研究提高电力系统应对自然灾害事故能力的措施与方法,这也是弹性电力系统建设的重要内容。增强电力系统弹性的最基本措施是加强系统结构,发展计及自然灾害的输电系统规划方法,以适当平衡支路建设成本与风险损失是值得研究的重要课题。在此背景下,通过综合考虑投资与运行经济性、常规运行情况下的系统可靠性和发生自然灾害情况下的系统风险等因素,发展了输电系统规划的混合整数非线性规划模型。构建了计及风电与负荷波动以及发生自然灾害情形下的2类场景集,分别用于对候选规划方案进行安全校验和风险评估。之后,在分层优化架构下采用粒子群优化算法求解所构造的优化模型。最后,用经典的18节点系统说明了所提方法的基本特征。  相似文献   

19.
以近3年上海停电事故为例,分析外力破坏、电力设备、人员行动、监控系统、沟通协调、备用容量、负荷水平和网架结构8大影响因素在电力突发事件中的实际状态和应急管理过程中发挥的作用.提出系统动力学模型,并进行实证,进一步深入探讨输电网络应急过程中的应急影响因素以及应急管理规律.  相似文献   

20.
在风电-火电系统中,若机组组合策略不当,风电出力的不确定性会引起电力系统的实际运行成本严重偏离期望成本,称之为决策风险.为了降低潜在的决策风险,运用情景生成与情景削减的方法表征风电出力的不确定性,并采用半绝对离差(lower semi-absolute deviation,LSAD)来衡量决策风险,即仅考虑实际运行成本高于期望成本的情形,提出了考虑风电出力不确定性与决策风险的机组组合模型,模型以最小化各个情景的半绝对离差风险期望值为优化目标(decision risk minimization,DRM).算例对比了不考虑决策风险的机组组合模型与考虑决策风险的机组组合模型,计算结果表明DRM模型能够降低潜在的决策风险.最小化运行成本期望将会增大决策风险,而最小化决策风险会导致运行成本期望的增加,计算结果表明DRM模型能够较好地处理风电出力的不确定性带来的运行成本期望与决策风险之间的矛盾关系,为决策者在不确定条件下进行决策提供新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号