首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with a Two-Echelon Fixed Fleet Heterogeneous Vehicle Routing Problem (2E-HVRP) faced by Brazilian wholesale companies. Vehicle routing problems with more than one phase are known as Multi-Echelon VRP and consider situations in which freight is moved through some intermediate facilities (e.g., cross-docks or distribution centers) before reaching its destination. The first phase of the problem dealt here is to choose a first-level vehicle, from an heterogeneous set, that will leave a depot and reach an intermediate uncapacitated facility (satellite) to serve a set of second-level vehicles. After that, it is necessary to define routes for smaller vehicles, also from an heterogeneous set, that will visit a set of customers departing from and returning to a satellite. The solution proposed here is an efficient island based memetic algorithm with a local search procedure based on Lin–Kernighan heuristic (IBMA-LK). In order to attest the algorithm’s efficiency, first it was tested in single echelon HVRP benchmark instances. After that the instances were adapted for two-echelon context and used for 2E-HVRP validation and, finally, it was tested on 2E-HVRP instances created using real world normalized data. Localsolver tool was also executed for comparison purposes. Promising results (which corroborate results obtained on the real problem) and future works are presented and discussed.  相似文献   

2.
In this paper, we present heuristic algorithms for a three-dimensional loading capacitated vehicle routing problem arising in a real-world situation. In this problem, customers make requests of goods, which are packed in a sortment of boxes. The objective is to find minimum cost delivery routes for a set of identical vehicles that, departing from a depot, visit all customers only once and return to the depot. Apart of the usual 3D container loading constraints which ensure that the boxes are packed completely inside the vehicles and that the boxes do not overlap each other in each vehicle, the problem also takes into account constraints related to the vertical stability of the cargo and multi-drop situations. The algorithms are based on the combination of classical heuristics from both vehicle routing and container loading literatures, as well as two metaheuristic strategies, and their use in more elaborate procedures. Although these approaches cannot assure optimal solutions for the respective problems, they are relatively simple, fast enough to solve real instances, flexible enough to include other practical considerations, and normally assure relatively good solutions in acceptable computational times in practice. The approaches are also sufficiently generic to be embedded with algorithms other than those considered in this study, as well as they can be easily adapted to consider other practical constraints, such as the load bearing strength of the boxes, time windows and pickups and deliveries. Computational tests were performed with these methods considering instances based on the vehicle routing literature and actual customers’ orders, as well as instances based on a real-world situation of a Brazilian carrier. The results show that the heuristics are able to produce relatively good solutions for real instances with hundreds of customers and thousands of boxes.  相似文献   

3.
4.
两级车辆路径问题是指物资必须先由中心仓库配送至中转站(第1级),再由中转站配送至客户(第2级)的一种车辆路径问题。针对该NP难问题提出一种Memetic算法通过自底向上的方式进行求解。首先利用改进的最优切割算法MDVRP-Split将客户合理分配至中转站;然后采用局部搜索解决第1级问题,交叉产生的精英个体通过局部搜索改进。标准算例的测试结果表明,所提出算法更注重求解质量与求解效率的平衡,性能优于其他现有的两种算法。  相似文献   

5.
A well-known variant of the vehicle routing problem involves backhauls, where vehicles deliver goods from a depot to linehaul customers and pick up goods from backhaul customers to the depot. The vehicle routing problem with divisible deliveries and pickups (VRPDDP) allows vehicles to visit each client once or twice for deliveries or pickups. In this study, a very efficient parallel approach based on variable neighborhood search (VNS) is proposed to solve VRPDDP. In this approach, asynchronous cooperation with a centralized information exchange strategy is used for parallelization of the VNS approach, called cooperative VNS (CVNS). All available problem sets of VRPDDP have been successfully solved with the CVNS, and the best solutions available in the literature have been significantly improved.  相似文献   

6.
The multi-depot split delivery vehicle routing problem combines the split delivery vehicle routing problem and the multiple depot vehicle routing problem. We define this new problem and develop an integer programming-based heuristic for it. We apply our heuristic to 30 instances to determine the reduction in distance traveled that can be achieved by allowing split deliveries among vehicles based at the same depot and vehicles based at different depots. We generate new test instances with high-quality, visually estimated solutions and report results on these instances.  相似文献   

7.
Many applications of the classical vehicle routing problem involve pick-up and delivery services between the depot and peripheral locations (warehouses, stores, stations). This paper studies an important version of the vehicle routing problem with pick-up and delivery (the so-called delivery and backhaul problem): delivery in our case refers to transportation of goods from the depot to customers, and pick-up (backhaul) refers to shipment from customers to the depot. The objective is to find a set of vehicle routes that service customers such that vehicle capacity is not violated and the total distance traveled is minimized. Tour partitioning heuristics for solving the capacitated vehicle routing problem are based on breaking a basic tour into disjoint segments served by different vehicles. This idea is adapted for solving the delivery and backhaul problem. Two heuristics that focus on efficient utilization of vehicles’ capacities are introduced, analyzed and tested numerically.  相似文献   

8.
The vehicle routing problem with simultaneous pick-up and deliveries, which considers simultaneous distribution and collection of goods to/from customers, is an extension of the capacitated vehicle routing problem. There are various real cases, where fleet of vehicles originated in a depot serves customers with pick-up and deliveries from/to their locations. Increasing importance of reverse logistics activities make it necessary to determine efficient and effective vehicle routes for simultaneous pick-up and delivery activities. The vehicle routing problem with simultaneous pick-up and deliveries is also NP-hard as a capacitated vehicle routing problem and this study proposes a genetic algorithm based approach to this problem. Computational example is presented with parameter settings in order to illustrate the proposed approach. Moreover, performance of the proposed approach is evaluated by solving several test problems.  相似文献   

9.
This paper addresses a recently practical combinatorial problem named Three-Dimensional Loading Capacitated Vehicle Routing Problem, which combines three-dimensional loading problem and vehicle routing problem in distribution logistics. The problem requires a combinatorial optimization of a feasible loading and successive routing of vehicles to satisfy customer demands, where all vehicles must start and finish at a central depot. The goal of this combinatorial problem is to minimize the total transportation cost while serving customers. Despite its clearly practical significance in the real world distribution management, for its high combinatorial complexity, published papers on this problem in literature are very limited.  相似文献   

10.
This paper studies the vehicle routing problem with due times. The vehicles are supposed to visit customers within the due times, and a penalty cost is imposed in case the vehicle arrives past the due times. The objective is to minimize the weighted sum of the traveling time of vehicles and the tardiness of the service customers receive. A mixed integer programming formulation and a heuristic based on the tabu search for a practical use are suggested. Route-perturb and route-improvement method for the neighborhood generation is proposed. Performances are compared with other heuristics appeared in the literature using the bench-mark data set modified to be fit to the model. It is shown that the suggested heuristic gives a good solution in a short computation time.  相似文献   

11.
This paper addressed the heterogeneous fixed fleet open vehicle routing problem (HFFOVRP), in which the demands of customers are fulfilled by a fleet of fixed number of vehicles with various capacities and related costs. Moreover, the vehicles start at the depot and terminate at one of the customers. This problem is an important variant of the classical vehicle routing problem and can cover more practical situations in transportation and logistics. We propose a multistart adaptive memory programming metaheuristic with modified tabu search algorithm to solve this new vehicle routing problem. The algorithmic efficiency and effectiveness are experimentally evaluated on a set of generated instances.  相似文献   

12.
In this paper, we address the problem of routing a fleet of vehicles from a central depot to customers with known demand. Routes originate and terminate at the central depot and obey vehicle capacity restrictions. Typically, researchers assume that all vehicles are identical. In this work, we relax the homogeneous fleet assumption. The objective is to determine optimal fleet size and mix by minimizing a total cost function which includes fixed cost and variable cost components. We describe several efficient heuristic solution procedures as well as techniques for generating a lower bound and an underestimate of the optimal solution. Finally, we present some encouraging computational results and suggestions for further study.  相似文献   

13.
We deal with a distribution network design problem that involves location, fleet assignment and routing decisions. Specifically, the distribution network under investigation is characterized by one central depot, a set of customers split into regions, and a heterogeneous fleet of vehicles. The goal is to locate one regional depot in each region, to assign some vehicles to each region, and to design the vehicles routes, each starting and ending at the central depot, in such a way that the regional depot is visited once by all vehicles assigned to the corresponding region, the vehicle capacities are not exceeded, the customer demands are satisfied and the overall distribution cost is minimized. The study has been motivated by a real life application related to a company operating in the North of Italy.  相似文献   

14.
The inventory-routing problem is an integrated logistics planning problem arising in situations where customers transfer the responsibility for inventory replenishment to the vendor. The vendor must then decide when to visit each customer, how much to deliver and how to sequence customers in vehicle routes. In this paper, we focus on the case where several different products have to be delivered by a fleet of vehicles over a finite and discrete planning horizon. We present a three-phase heuristic based on a decomposition of the decision process of the vendor. In the first phase, replenishment plans are determined by using a Lagrangian-based method. These plans do not specify delivery sequences for the vehicles. The sequencing of the planned deliveries is performed in the second phase in which a simple procedure is employed to construct vehicle routes. The third phase incorporates planning and routing decisions into a mixed-integer linear programming model aimed at finding a good solution to the integrated problem. Computational experiments show that our heuristic is effective on instances with up to 50 customers and 5 products.  相似文献   

15.
The cumulative capacitated vehicle routing problem (CCVRP) is a relatively new version of the classical capacitated vehicle routing problem, and it is equivalent to a traveling repairman problem with capacity constraints and a homogeneous vehicle fleet, which aims to minimize the total arrival time at customers. Many real‐world applications can be modeled by this problem, such as the important application resulting from the humanitarian aid following a natural disaster. In this paper, two heuristics are proposed. The first one is a constructive heuristic to generate an initial solution and the second is the skewed variable neighborhood search (SVNS) heuristic. The SVNS algorithm starts with the initial solution. At each iteration, the perturbation phase and the local search phase are used to improve the solution of the CCVRP, and the distance function in acceptance criteria phase is used to improve the exploration of faraway valleys. This algorithm is applied to a set of benchmarks, and the comparison results show that the proposed algorithms provide better solutions than those reported in the previous literature on memetic algorithms and adaptive large neighborhood search heuristics.  相似文献   

16.
In this paper, we present and compare formulations for the inventory routing problem (IRP) where the demand of customers has to be served, over a discrete time horizon, by capacitated vehicles starting and ending their routes at a depot. The objective of the IRP is the minimization of the sum of inventory and transportation costs. The formulations include known and new mathematical programming formulations. Valid inequalities are also presented. The formulations are tested on a large set of benchmark instances. One of the most significant conclusions is that the formulations that use vehicle‐indexed variables are superior to the more compact, aggregate formulations.  相似文献   

17.
In this paper, we present an improved two-level heuristic to solve the clustered vehicle routing problem (CluVRP). The CluVRP is a generalization of the classical capacitated vehicle routing problem (CVRP) in which customers are grouped into predefined clusters, and all customers in a cluster must be served consecutively by the same vehicle. This paper contributes to the literature in the following ways: (i) new upper bounds are presented for multiple benchmark instances, (ii) good heuristic solutions are provided in much smaller computing times than existing approaches, (iii) the CluVRP is reduced to its cluster level without assuming Euclidean coordinates or distances, and (iv) a new variant of the CluVRP, the CluVRP with weak cluster constraints, is introduced. In this variant, clusters are allocated to vehicles in their entirety, but all corresponding customers can be visited by the vehicle in any order.The proposed heuristic solves the CluVRP by combining two variable neighborhood search algorithms, that explore the solution space at the cluster level and the individual customer level respectively. The algorithm is tested on different benchmark instances from the literature with up to 484 nodes, obtaining high quality solutions while requiring only a limited calculation time.  相似文献   

18.
In this paper, we propose a two-phase hybrid heuristic algorithm to solve the capacitated location-routing problem (CLRP). The CLRP combines depot location and routing decisions. We are given on input a set of identical vehicles (each having a capacity and a fixed cost), a set of depots with restricted capacities and opening costs, and a set of customers with deterministic demands. The problem consists of determining the depots to be opened, the customers and the vehicles to be assigned to each open depot, and the routes to be performed to fulfill the demand of the customers. The objective is to minimize the sum of the costs of the open depots, of the fixed cost associated with the used vehicles, and of the variable traveling costs related to the performed routes. In the proposed hybrid heuristic algorithm, after a Construction phase (first phase), a modified granular tabu search, with different diversification strategies, is applied during the Improvement phase (second phase). In addition, a random perturbation procedure is considered to avoid that the algorithm remains in a local optimum for a given number of iterations. Computational experiments on benchmark instances from the literature show that the proposed algorithm is able to produce, within short computing time, several solutions obtained by the previously published methods and new best known solutions.  相似文献   

19.
This paper addresses the problem of optimally coordinating a production‐distribution system over a multi‐period finite horizon, where a facility production produces several items that are distributed to a set of customers by a fleet of homogeneous vehicles. The demand for each item at each customer is known over the horizon. The production planning determines how much to produce of each item in every period, while the distribution planning defines when customers should be visited, the amount of each item that should be delivered to customers and the vehicle routes. The objective is to minimize the sum of production and inventory costs at the facility, inventory costs at the customers and distribution costs. We also consider a related problem of inventory routing, where a supplier receives or produces known quantities of items in each period and has to solve the distribution problem. We propose a tabu search procedure for solving such problems, and this approach is compared with vendor managed policies proposed in the literature, in which the facility knows the inventory levels of the customers and determines the replenishment policies.  相似文献   

20.
Heuristic approaches for the inventory-routing problem with backlogging   总被引:2,自引:0,他引:2  
We study an inventory-routing problem in which multiperiod inventory holding, backlogging, and vehicle routing decisions are to be taken for a set of customers who receive units of a single item from a depot with infinite supply. We consider a case in which the demand at each customer is deterministic and relatively small compared to the vehicle capacity, and the customers are located closely such that a consolidated shipping strategy is appropriate. We develop constructive and improvement heuristics to obtain an approximate solution for this NP-hard problem and demonstrate their effectiveness through computational experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号