首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In the last decade, the number of web‐based applications is increasing rapidly, which leads to high demand for user authentication protocol for multiserver environment. Many user‐authentication protocols have been proposed for different applications. Unfortunately, most of them either have some security weaknesses or suffer from unsatisfactory performance. Recently, Ali and Pal proposed a three‐factor user‐authentication protocol for multiserver environment. They claimed that their protocol can provide mutual authentication and is secure against many kinds of attacks. However, we find that Ali and Pal's protocol cannot provide user anonymity and is vulnerable to 4 kinds of attacks. To enhance security, we propose a new user‐authentication protocol for multiserver environment. Then, we provide a formal security analysis and a security discussion, which indicate our protocol is provably secure and can withstand various attacks. Besides, we present a performance analysis to show that our protocol is efficient and practical for real industrial environment.  相似文献   

3.
Understanding security failures of cryptographic protocols is the key to both patching existing protocols and designing future schemes. In this paper, we analyze two recent proposals in the area of password‐based remote user authentication using smart cards. First, we point out that the scheme of Chen et al. cannot achieve all the claimed security goals and report its following flaws: (i) it is vulnerable to offline password guessing attack under their nontamper resistance assumption of the smart cards; and (ii) it fails to provide forward secrecy. Then, we analyze an efficient dynamic ID‐based scheme without public‐key operations introduced by Wen and Li in 2012. This proposal attempts to overcome many of the well‐known security and efficiency shortcomings of previous schemes and supports more functionalities than its counterparts. Nevertheless, Wen–Li's protocol is vulnerable to offline password guessing attack and denial of service attack, and fails to provide forward secrecy and to preserve user anonymity. Furthermore, with the security analysis of these two schemes and our previous protocol design experience, we put forward three general principles that are vital for designing secure smart‐card‐based password authentication schemes: (i) public‐key techniques are indispensable to resist against offline password guessing attack and to preserve user anonymity under the nontamper resistance assumption of the smart card; (ii) there is an unavoidable trade‐off when fulfilling the goals of local password update and resistance to smart card loss attack; and (iii) at least two exponentiation (respectively elliptic curve point multiplication) operations conducted on the server side are necessary for achieving forward secrecy. The cryptanalysis results discourage any practical use of the two investigated schemes and are important for security engineers to make their choices correctly, whereas the proposed three principles are valuable to protocol designers for advancing more robust schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
To circumvent using of multiple single servers, the theory of multiserver communication exists and numerous authentication protocols put forward for providing secure communication. Very recently, Amin‐Biswas proposes bilinear pairing–based multiserver scheme by describing some security pitfalls of Hsieh‐Leu protocol and claims that it is secured against related security threats. However, this paper claims that Amin‐Biswas protocol is still susceptible to off‐line identity and password guessing attack, user untraceability attack, and server masquerading attack. The cryptographic protocol should be attacks‐free for real‐time application. To achieve attacks‐free security, we put forward smart card–based multiserver authentication protocol by using the concept of bilinear pairing operation. The formal method strand space model has been used to prove the correctness of the proposed scheme. Additionally, rigorous security analysis ensures pliability of common security threats. The performance and security features of our scheme are also compared with that of the similar existing schemes. The comparison results show that our protocol achieves more security features with less complexity.  相似文献   

5.
Nowadays, authentication protocols are essential for secure communications specially for roaming networks, distributed computer networks, and remote wireless communication. The numerous users in these networks rise vulnerabilities. Thus, privacy‐preserving methods have to be run to provide more reliable services and sustain privacy. Anonymous authentication is a method to remotely authenticate users with no revelation about their identity. In this paper, we analyze 2 smart card–based protocols that the user's identity is anonymous. However, we represent that they are vulnerable to privileged insider attack. It means that the servers can compromise the users' identity for breaking their privacy. Also, we highlight that the Wen et al protocol has flaws in both stolen smart card and stolen server attacks and the Odelu et al protocol is traceable. Then, we propose 2 modified anonymous authentication protocols. Finally, we analyze our improved protocols with both heuristic and formal methods.  相似文献   

6.
User authentication is a prominent security requirement in wireless sensor networks (WSNs) for accessing the real‐time data from the sensors directly by a legitimate user (external party). Several user authentication schemes are proposed in the literature. However, most of them are either vulnerable to different known attacks or they are inefficient. Recently, Althobaiti et al. presented a biometric‐based user authentication scheme for WSNs. Although their scheme is efficient in computation, in this paper, we first show that their scheme has several security pitfalls such as (i) it is not resilient against node capture attack; (ii) it is insecure against impersonation attack; and (iii) it is insecure against man‐in‐the‐middle attack. We then aim to propose a novel biometric‐based user authentication scheme suitable for WSNs in order to withstand the security pitfalls found in Althobaiti et al. scheme. We show through the rigorous security analysis that our scheme is secure and satisfies the desirable security requirements. Furthermore, the simulation results for the formal security verification using the most widely used and accepted Automated Validation of Internet Security Protocols and Applications tool indicate that our scheme is secure. Our scheme is also efficient compared with existing related schemes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Wearable devices, which provide the services of collecting personal data, monitoring health conditions, and so on, are widely used in many fields, ranging from sports to healthcare. Although wearable devices bring convenience to people's lives, they bring about significant security concerns, such as personal privacy disclosure and unauthorized access to wearable devices. To ensure the privacy and security of the sensitive data, it is critical to design an efficient authentication protocol suitable for wearable devices. Recently, Das et al proposed a lightweight authentication protocol, which achieves secure communication between the wearable device and the mobile terminal. However, we find that their protocol is vulnerable to offline password guessing attack and desynchronization attack. Therefore, we put forward a user centric three‐factor authentication scheme for wearable devices assisted by cloud server. Informal security analysis and formal analysis using ProVerif is executed to demonstrate that our protocol not only remedies the flaws of the protocol of Das et al but also meets desired security properties. Comparison with related schemes shows that our protocol satisfies security and usability simultaneously.  相似文献   

8.
The e‐commerce has got great development in the past decades and brings great convenience to people. Users can obtain all kinds of services through e‐commerce platform with mobile device from anywhere and at anytime. To make it work well, e‐commerce platform must be secure and provide privacy preserving. To achieve this goal, Islam et al. proposed a dynamic identity‐based remote user mutual authentication scheme with smart card using Elliptic Curve Cryptography(ECC). Islam et al claimed that the security of their scheme was good enough to resist various attacks. However, we demonstrate that their scheme is vulnerable to insider attack and suffers from off‐line password guessing attack if smart card is compromised. To overcome the deficiencies, we present an improved scheme over Islam's scheme. The security proof and analysis shows that our scheme can also provide user anonymity and mutual authentication, and the security is enough to against relay attack, impersonation attack, and other common secure attackers. The performance analysis shows that the proposed scheme is more efficient than Islam et al's scheme.  相似文献   

9.
Authentication and key agreement (AKA) provides flexible and convenient sercices. Most traditional AKA protocols are designed to apply in single-server environment, where a user has to register at different servers to access different types of network services and the user have to remember or manage a large number of usernames and passwords. Later, multi-server AKA protocols resolve the repeated registration problem of single-server AKA protocols, where a user can access different servers to get different services using a single registration and the same username and password. Recently, in 2015, Lu et al proposed a light-weight ID based authentication and key agreement protocol for multi-server architecture, referred to as LAKA protocol. They claimed their protocol can overcome all shortcomings which existed in Xue et al’s protocol. Unfortunately, our further research shows that LAKA protocol still suffers from server spoofing attack, stolen smart card attack etc. To overcome the weakness of LAKA protocol, an energy-efficient and lightweight authentication and key agreement protocol for multi-server architecture is proposed (abbreviated to ELAKA). The ELAKA protocol not only provides the security features declared by LAKA protocol, but also has some other advantages. First, the ELAKA protocol can realize authentication and key agreement just by three handshakes with extremely low communication cost and computation cost between users and servers, which can achieve a delicate balance of security and performance. Second, ELAKA protocol can enable the user enjoy the remote services with privacy protection. Finally the ELAKA protocol is proved secure against known possible attacks by using BAN logic. As a result, these features make ELAKA protocol is very suitable for computation-limited mobile devices (such as smartphone, PAD, tablets) in comparison to other related existing protocols.  相似文献   

10.
Nowadays, seamless roaming service in heterogeneous wireless networks attracts more and more attention. When a mobile user roams into a foreign domain, the process of secure handover authentication and key exchange (AKE) plays an important role to verify the authenticity and establish a secure communication between the user and the access point. Meanwhile, to prevent the user's current location and moving history information from being tracked, privacy preservation should be also considered. However, existing handover AKE schemes have more or less defects in security aspects or efficiency. In this paper, a secure pairing‐free identity‐based handover AKE protocol with privacy preservation is proposed. In our scheme, users' temporary identities will be used to conceal their real identities during the handover process, and the foreign server can verify the legitimacy of the user with the home server's assistance. Besides, to resist ephemeral private key leakage attack, the session key is generated from the static private keys and the ephemeral private keys together. Security analysis shows that our protocol is provably secure in extended Canetti‐Krawczyk (eCK) model under the computational Diffie‐Hellman (CDH) assumption and can capture desirable security properties including key‐compromise impersonation resistance, ephemeral secrets reveal resistance, strong anonymity, etc. Furthermore, the efficiency of our identity‐based protocol is improved by removing pairings, which not only simplifies the complex management of public key infrastructure (PKI) but also reduces the computation overhead of ID‐based cryptosystem with pairings. It is shown that our proposed handover AKE protocol provides better security assurance and higher computational efficiency for roaming authentication in heterogeneous wireless networks.  相似文献   

11.
Debiao He 《Ad hoc Networks》2012,10(6):1009-1016
With the continue evaluation of mobile devices in terms of the capabilities and services, security concerns increase dramatically. To provide secured communication in mobile client–server environment, many user authentication protocols from pairings have been proposed. In 2009, Goriparthi et al. proposed a new user authentication scheme for mobile client–server environment. In 2010, Wu et al. demonstrated that Goriparthi et al.’s protocol fails to provide mutual authentication and key agreement between the client and the server. To improve security, Wu et al. proposed an improved protocol and demonstrated that their protocol is provably secure in random oracle model. Based on Wu et al.’s work, Yoon et al. proposed another scheme to improve performance. However, their scheme just reduces one hash function operation at the both of client side and the server side. In this paper, we present a new user authentication and key agreement protocol using bilinear pairings for mobile client–server environment. Performance analysis shows that our protocol has better performance than Wu et al.’s protocol and Yoon et al.’s protocol. Then our protocol is more suited for mobile client–server environment. Security analysis is also given to demonstrate that our proposed protocol is provably secure against previous attacks.  相似文献   

12.
Recently, Zhang et al. proposed a password‐based authenticated key agreement for session initiation protocol (Int J Commun Syst 2013, doi:10.1002/dac.2499). They claimed that their protocol is secure against known security attacks. However, in this paper, we indicate that the protocol by Zhang et al. is vulnerable to impersonation attack whereby an active adversary without knowing the user's password is able to introduce himself/herself as the user. In addition, we show that the protocol by Zhang et al. suffers from password changing attack. To overcome the weaknesses, we propose an improved authentication scheme for session initiation protocol. The rigorous analysis shows that our scheme achieves more security than the scheme by Zhang et al. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In remote system security, 2‐factor authentication is one of the security approaches and provides fundamental protection to the system. Recently, numerous 2‐factor authentication schemes are proposed. In 2014, Troung et al proposed an enhanced dynamic authentication scheme using smart card mainly to provide anonymity, secure mutual authentication, and session key security. By the analysis of Troung et al's scheme, we observed that Troung et al' s scheme does not provide user anonymity, perfect forward secrecy, server's secret key security and does not allow the user to choose his/her password. We also identified that Troung et al's scheme is vulnerable to replay attack. To fix these security weaknesses, a robust authentication scheme is proposed and analyzed using the formal verification tool for measuring the robustness. From the observation of computational efficiency of the proposed scheme, we conclude that the scheme is more secure and easy to implement practically.  相似文献   

14.
Satellite's communication system is used to communicate under significant distance and circumstances where the other communication systems are not comfortable. Since all the data are exchanged over a public channel, so the security of the data is an essential component for the communicating parties. Both key exchange and authentication are two cryptographic tools to establish a secure communication between two parties. Currently, various kinds of authentication protocols are available to establish a secure network, but all of them depend on number–theoretical (discrete logarithm problem/factorization assumption) hard assumptions. Due to Shor's and Grover's computing algorithm number theoretic assumptions are breakable by quantum computers. Although Kumar and Garg have proposed a quantum attack-resistant protocol for satellite communication, it cannot resist stolen smart card attack. We have analyzed that how Kumar and Garg is vulnerable to the stolen smart card attack using differential power analysis attack described in He et al and Chen and Chen. We have also analyzed the modified version of signal leakage attack and sometimes called improved signal leakage attack on Kumar and Garg's protocol. We have tried to construct a secure and efficient authentication protocol for satellites communication that is secure against quantum computing. This is more efficient as it requires only three messages of exchange. This paper includes security proof and performance of the proposed authentication and key agreement protocol.  相似文献   

15.
Nowadays, the password-based remote user authentication mechanism using smart card is one of the simplest and convenient authentication ways to ensure secure communications over the public network environments. Recently, Liu et al. proposed an efficient and secure smart card based password authentication scheme. However, we find that Liu et al.’s scheme is vulnerable to the off-line password guessing attack and user impersonation attack. Furthermore, it also cannot provide user anonymity. In this paper, we cryptanalyze Liu et al.’s scheme and propose a security enhanced user authentication scheme to overcome the aforementioned problems. Especially, in order to preserve the user anonymity and prevent the guessing attack, we use the dynamic identity technique. The analysis shows that the proposed scheme is more secure and efficient than other related authentication schemes.  相似文献   

16.
To ensure secure communication in satellite communication systems, recently, Zhang et al presented an authentication with key agreement scheme and claimed that their scheme satisfies various security requirements. However, this paper demonstrates that Zhang et al's scheme is insecure against the stolen‐verifier attack and the denial of service attack. Furthermore, to authenticate a user, Zhang et al's scheme requires large computational load to exhaustively retrieve the user's identity and password from the account database according to a temporary identity and then update the temporary identity in the database. To overcome the weaknesses existing in Zhang et al's scheme, we proposed an enhanced authentication with key agreement scheme for satellite communication systems. The analyses of our proposed scheme show that the proposed scheme possesses perfect security properties and eliminates the weaknesses of Zhang et al's scheme well. Therefore, from the authors' viewpoints, the proposed scheme is more suitable for the authentication scheme of mobile satellite communication systems.  相似文献   

17.
As the core signaling protocol for multimedia services, such as voice over internet protocol, the session initiation protocol (SIP) is receiving much attention and its security is becoming increasingly important. It is critical to develop a roust user authentication protocol for SIP. The original authentication protocol is not strong enough to provide acceptable security level, and a number of authentication protocols have been proposed to strengthen the security. Recently, Zhang et al. proposed an efficient and flexible smart‐card‐based password authenticated key agreement protocol for SIP. They claimed that the protocol enjoys many unique properties and can withstand various attacks. However, we demonstrate that the scheme by Zhang et al. is insecure against the malicious insider impersonation attack. Specifically, a malicious user can impersonate other users registered with the same server. We also proposed an effective fix to remedy the flaw, which remedies the security flaw without sacrificing the efficiency. The lesson learned is that the authenticators must be closely coupled with the identity, and we should prevent the identity from being separated from the authenticators in the future design of two‐factor authentication protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
With the advent of state-of-art technologies, the Telecare Medicine Information System (TMIS) now offers fast and convenient healthcare services to patients at their doorsteps. However, this architecture engenders new risks and challenges to patients' and the server's confidentiality, integrity and security. In order to avoid any resource abuse and malicious attack, employing an authentication scheme is widely considered as the most effective approach for the TMIS to verify the legitimacy of patients and the server. Therefore, several authentication protocols have been proposed to this end. Very recently, Chaudhry et al. identified that there are vulnerabilities of impersonation attacks in Islam et al.'s scheme. Therefore, they introduced an improved protocol to mitigate those security flaws. Later, Qiu et al. proved that these schemes are vulnerable to the man-in-the-middle, impersonation and offline password guessing attacks. Thus, they introduced an improved scheme based on the fuzzy verifier techniques, which overcome all the security flaws of Chaudhry et al.'s scheme. However, there are still some security flaws in Qiu et al.'s protocol. In this article, we prove that Qiu et al.'s protocol has an incorrect notion of perfect user anonymity and is vulnerable to user impersonation attacks. Therefore, we introduce an improved protocol for authentication, which reduces all the security flaws of Qiu et al.'s protocol. We also make a comparison of our protocol with related protocols, which shows that our introduced protocol is more secure and efficient than previous protocols.  相似文献   

19.
Authentication schemes assure that authorised user can fraudulently obtain his/her required services from home domains. Recently, Li et al. (International Journal of Network Management, 2013; 23(5):311–324) proposed a remote user authentication scheme. They claimed that their protocol is secure against known security attacks. However, in this paper, we indicate that Li et al.'s scheme is insecure against user impersonation attack. We show that an active adversary can easily masquerade as a legitimate user without knowing the user's secret information. As a remedy, we also proposed an improved authentication scheme to overcome the security weaknesses of Li et al.'s scheme. To show the security of our scheme, we prove its security the random oracle model. The implementation results show that our improved scheme offers a reduction of 58% in computational cost and a communication cost reduction of 48% with respect to Li et al.'s scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The fast growth of mobile services and devices has made the conventional single‐server architecture ineffective from the point of its functional requirements. To extend the scalability and availability of mobile services to various applications, it is required to deploy multiserver architecture. In 2016, Moon et al insisted that Lu et al's scheme is weak to insiders and impersonation attack, then they proposed a biometric‐based scheme for authentication and key agreement of users in multiserver environments. Unfortunately, we analyze Moon et al's scheme and demonstrate that their scheme does not withstand various attacks from a malicious registered server. We propose a user authentication scheme with server mutual verification to overcome these security drawbacks. The proposed scheme withstands an attack from malicious insiders in multiserver environments. We use a threshold cryptography to strengthen the process of server authorization and to provide better security functionalities. We then prove the authentication and session key of the proposed scheme using Burrows‐Abadi‐Needham (BAN) logic and show that our proposed scheme is secure against various attacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号