首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many sensor node platforms used for establishing wireless sensor networks (WSNs) can support multiple radio channels for wireless communication. Therefore, rather than using a single radio channel for whole network, multiple channels can be utilized in a sensor network simultaneously to decrease overall network interference, which may help increase the aggregate network throughput and decrease packet collisions and delays. This method, however, requires appropriate schemes to be used for assigning channels to nodes for multi‐channel communication in the network. Because data generated by sensor nodes are usually delivered to the sink node using routing trees, a tree‐based channel assignment scheme is a natural approach for assigning channels in a WSN. We present two fast tree‐based channel assignment schemes (called bottom up channel assignment and neighbor count‐based channel assignment) for multi‐channel WSNs. We also propose a new interference metric that is used by our algorithms in making decisions. We validated and evaluated our proposed schemes via extensive simulation experiments. Our simulation results show that our algorithms can decrease interference in a network, thereby increasing performance, and that our algorithms are good alternatives for static channel assignment in WSNs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Constrained by the physical environments, the long‐thin topology has recently been promoted for many practical deployments of wireless sensor networks (WSNs). In general, a long‐thin topology is composed of a number of long branches of sensor nodes, where along a branch each sensor node has only one potential parent node toward the sink node. Although data aggregation may alleviate excessive packet contention, the maximum payload size of a packet and the dynamically changing traffic loads may severely affect the amount of sensor readings that may be collected along a long branch of sensor nodes. In addition, many practical applications of long‐thin WSNs demand the exact sensor readings at each location along the deployment areas for monitoring and analysis purposes, so sensor readings may not be aggregated when they are collected. This paper proposes a lightweight, self‐adaptive scheme that designates multiple collection nodes, termed lock gates, along a long‐thin network to collect sensor readings sent from their respective upstream sensor nodes. The self‐adaptive lock gate designation scheme balances between the responsiveness and the congestion of data collection while mitigating the funneling effect. The scheme also dynamically adapts the designation of lock gates to accommodate the time‐varying sensor reading generation rates of different sensor nodes. A testbed of 100 Jennic sensor nodes is developed to demonstrate the effectiveness of the proposed lock gate designation scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Traffic management is a highly beneficial mechanism for satisfying quality‐of‐service requirements and overcoming the resource scarcity problems in networks. This paper introduces an optimal connection admission control mechanism to decrease the packet loss ratio and end‐to‐end delay in cognitive radio sensor networks (CRSNs). This mechanism admits data flows based on the value of information sent by the sensor nodes, the network state, and the estimated required resources of the data flows. The number of required channels of each data flow is estimated using a proposed formula that is inspired by a graph coloring approach. The proposed admission control mechanism is formulated as a semi‐Markov decision process and a linear programming problem is derived to obtain the optimal admission control policy for obtaining the maximum reward. Simulation results demonstrate that the proposed mechanism outperforms a recently proposed admission control mechanism in CRSNs.  相似文献   

4.
In addition to the requirements of the terrestrial sensor network where performance metrics such as throughput and packet delivery delay are often emphasized, energy efficiency becomes an even more significant and challenging issue in underwater acoustic sensor networks, especially when long‐term deployment is required. In this paper, we tackle the problem of energy conservation in underwater acoustic sensor networks for long‐term marine monitoring applications. We propose an asynchronous wake‐up scheme based on combinatorial designs to minimize the working duty cycle of sensor nodes. We prove that network connectivity can be properly maintained using such a design even with a reduced duty cycle. We study the utilization ratio of the sink node and the scalability of the network using multiple sink nodes. Simulation results show that the proposed asynchronous wake‐up scheme can effectively reduce the energy consumption for idle listening and can outperform other cyclic difference set‐based wake‐up schemes. More significantly, high performance is achieved without sacrificing network connectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Recently, underwater acoustic sensor networks (UASNs) have been considered as a promising approach for monitoring and exploring the oceans in lieu of traditional underwater wireline instruments. As a result, a broad range of applications exists ranging from oil industry to aquaculture and includes oceanographic data collection, disaster prevention, offshore exploration, assisted navigation, tactical surveillance, and pollution monitoring. However, the unique characteristics of underwater acoustic communication channels, such as high bit error rate, limited bandwidth, and variable delay, lead to a large number of packet drops, low throughput, and significant waste of energy because of packets retransmission in these applications. Hence, designing an efficient and reliable data communication protocol between sensor nodes and the sink is crucial for successful data transmission in underwater applications. Accordingly, this paper is intended to introduce a novel nature‐inspired evolutionary link quality‐aware queue‐based spectral clustering routing protocol for UASN‐based underwater applications. Because of its distributed nature, link quality‐aware queue‐based spectral clustering routing protocol successfully distributes network data traffic load evenly in harsh underwater environments and avoids hotspot problems that occur near the sink. In addition, because of its double check mechanism for signal to noise ratio and Euclidean distance, it adopts opportunistically and provides reliable dynamic cluster‐based routing architecture in the entire network. To sum up, the proposed approach successfully finds the best forwarding relay node for data transmission and avoids path loops and packet losses in both sparse and densely deployed UASNs. Our experimental results obtained in a set of extensive simulation studies verify that the proposed protocol performs better than the existing routing protocols in terms of data delivery ratio, overall network throughput, end‐to‐end delay, and energy efficiency.  相似文献   

6.
The MAC protocol for a cognitive radio network should allow access to unused spectrum holes without (or with minimal) interference to incumbent system devices. To achieve this main goal, in this paper a distributed cognitive radio MAC (DCR‐MAC) protocol is proposed for wireless ad hoc networks that provides for the detection and protection of incumbent systems around the communication pair. DCR‐MAC operates over a separate common control channel and multiple data channels; hence, it is able to deal with dynamics of resource availability effectively in cognitive networks. A new type of hidden node problem is introduced that focuses on possible signal collisions between incumbent devices and cognitive radio ad hoc devices. To this end, a simple and efficient sensing information exchange mechanism between neighbor nodes with little overhead is proposed. In DCR‐MAC, each ad hoc node maintains a channel status table with explicit and implicit channel sensing methods. Before a data transmission, to select an optimal data channel, a reactive neighbor information exchange is carried out. Simulation results show that the proposed distributed cognitive radio MAC protocol can greatly reduce interference to the neighbor incumbent devices. A higher number of neighbor nodes leads to better protection of incumbent devices. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Sensor networks are deployed in numerous military and civil applications, such as remote target detection, weather monitoring, weather forecast, natural resource exploration and disaster management. Despite having many potential applications, wireless sensor networks still face a number of challenges due to their particular characteristics that other wireless networks, like cellular networks or mobile ad hoc networks do not have. The most difficult challenge of the design of wireless sensor networks is the limited energy resource of the battery of the sensors. This limited resource restricts the operational time that wireless sensor networks can function in their applications. Routing protocols play a major part in the energy efficiency of wireless sensor networks because data communication dissipates most of the energy resource of the networks. This paper studies the importance of considering neighboring nodes in the energy efficiency routing problem. After showing that the routing problem that considers the remaining energy of all sensor nodes is NP-complete, heuristics are proposed for the problem. Simulation results show that the routing algorithm that considers the remaining energy of all sensor nodes improves the system lifetime significantly compared to that of minimum transmission energy algorithms. Also, the energy dissipation of neighboring nodes accounts for a considerable amount of the total energy dissipation. Therefore, a method that reduces the energy dissipation by notifying the neighboring nodes to turn off their radio when not necessary is proposed. By reducing the unnecessary energy dissipation of the neighbors, the lifetime is increased significantly.  相似文献   

8.
With recent advances in wireless networking and in low‐power sensor technology, wireless sensor networks (WSNs) have taken significant roles in various applications. Whereas some WSNs only require minimal bandwidth, newer applications operate with a noticeably larger amount of data. One way to deal with these applications is to maximize the available capacity by utilizing multiple wireless channels. We propose DynaChannAl, a distributed dynamic wireless channel allocation algorithm that effectively distributes nodes to multiple wireless channels in WSNs. Specifically, DynaChannAl targets applications where mobile nodes connect to preexisting wireless backbones and takes the expected end‐to‐end queuing delay as its core metric. We used the link quality indicator values provided by 802.15.4 radios to whitelist high‐quality links and evaluate these links with the aggregated queuing latency, making it useful for applications that require minimal end‐to‐end delay (i.e., health care). DynaChannAl is a lightweight and adoptable scheme that can be incorporated easily with predeveloped systems. As the first study to consider end‐to‐end latency as the core metric for channel allocation in WSNs, we evaluate DynaChannAl on a 45 node test bed and show that DynaChannAl successfully distributes source nodes to different channels and enables them to select channels and links that minimizes the end‐to‐end latency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Wireless sensor networks for environmental monitoring and agricultural applications often face Long‐range requirements at low bit rates together with a large numbers of nodes. This paper presents the design and test of a novel wireless sensor network that combines a large radio range with very low power consumption and cost. Our asymmetric sensor network uses ultra‐low‐cost 40‐MHz transmitters and a sensitive software‐defined radio receiver with multi‐channel capability. Experimental radio range measurements in two different outdoor environments demonstrate a single‐hop range of up to 1.8 km. A theoretical model for radio propagation at 40 MHz in outdoor environments is proposed and validated with the experimental measurements. The reliability and fidelity of network communication over longer periods is evaluated with a deployment for distributed temperature measurements. Our results demonstrate the feasibility of the transmit‐only low‐frequency system design approach for future environmental sensor networks. Although there have been several papers proposing the theoretical benefits of this approach, to the best of our knowledge, this is the first paper to provide experimental validation of such claims. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
As sensor nodes have limited sensing and transmission capability, their efficient deployment takes an important role in proper monitoring of the critical targets in various applications of wireless sensor networks (WSNs). The key issues that need to be taken care during deployment are the lesser number of deployed sensors, coverage of the targets, and connectivity between the sensor nodes. In this paper, we have proposed NSGA‐II with modified dominance to solve the node deployment problem with the aforementioned three conflicting objectives. The conventional domination method is modified for better performance of the NSGA‐II. An intelligent representation of chromosome is provided. Three conflicting objectives are derived to evaluate the chromosomes. Extensive simulation on the proposed algorithm and the statistical test, and analysis of variance (ANOVA) followed by post hoc analysis are performed.  相似文献   

11.
Wireless sensor networks consist of a large number of wireless sensor nodes that organize themselves into multihop radio networks. With different link quality, different distance to the sink, nodes in a network are not treated equally, especially in a network with high traffic. In this paper, we propose a fairness adaptive time division multiple access scheduling algorithm (FATS) considering the fairness of network resource allocation. This algorithm, combining several heuristic algorithms, can assign network resources to the nodes to lead to maximizing the minimum end‐to‐end packet delivery success ratio. Because the wireless link is usually time‐varying, this algorithm can also assign the time slots to the nodes adaptively and energy‐efficiently according to the variation of link quality. We define several criteria for the slot assignment and adjustment. The change in slot assignment can be finished quickly during normal packet transmission, which causes little affect to the network. Meanwhile, considering the required data rate, FATS can achieve the maximum transmission capacity of the network with specified static or dynamic reliability. The simulation results show that the FATS can significantly reduce the difference of the end‐to‐end packet delivery ratio, track the variation of link quality quickly, and achieve the fairness of resource allocation.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Bandwidth management and traffic control are critical issues to guarantee the quality of service in cognitive radio networks. This paper exploits a network load refinement approach to achieve the efficient resource utilization and provide the required quality of service. A connection admission control approach is introduced in cognitive radio multimedia sensor networks to provide the data transmission reliability and decrease jitter and packet end‐to‐end delay. In this approach, the admission of multimedia flows is controlled based on multimedia sensors' correlation information and traffic characteristics. We propose a problem, connection admission control optimization problem, to optimize the connection admission control operation. Furthermore, using a proposed weighting scheme according to the correlation of flows issued by multimedia sensors enables us to convert the connection admission control optimization problem to a binary integer‐programming problem. This problem is a kind of a Knapsack problem that is solved by a branch and bound method. Simulation results verify the proposed admission control method's effectiveness and demonstrate the benefits of admission control and traffic management in cognitive radio multimedia sensor networks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we discuss an interference aware multichannel MAC (IAMMAC) protocol assign channels for communication in wireless sensor‐actor networks. An actor acts as a cluster head for k‐hop sensors and computes the shortest path for all the sensors. Then, the actor partitions the cluster into multiple subtrees and assigns a noninterference channel to each subtree. The actor 1‐hop sensors are represented as relay nodes. The actor selects a relay node as a backup cluster head (BCH) based on the residual energy and node degree. After selecting a BCH from the relay nodes, the actor broadcast this information to the remaining relay nodes using the common control channel. The relay sensors use the same channel of BCH to communicate with it. However, the other cluster members do not change their data channel. Further, interference‐aware and throughput‐aware multichannel MAC protocol is also proposed for actor–actor coordination. The performance of the proposed IAMMAC protocol is analyzed using standard network parameters such as packet delivery ratio, goodput, end‐to‐end delay, and energy dissipation in the network. The obtained simulation results indicate that the IAMMAC protocol has superior performance as compared with the existing MAC protocols. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Energy efficiency has become an important design consideration in geographic routing protocols for wireless sensor networks because the sensor nodes are energy constrained and battery recharging is usually not feasible. However, numerous existing energy‐aware geographic routing protocols are energy‐inefficient when the detouring mode is involved in the routing. Furthermore, most of them rarely or at most implicitly take into account the energy efficiency in the advance. In this paper, we present a novel energy‐aware geographic routing (EAGR) protocol that attempts to minimize the energy consumption for end‐to‐end data delivery. EAGR adaptively uses an existing geographic routing protocol to find an anchor list based on the projection distance of nodes for guiding packet forwarding. Each node holding the message utilizes geographic information, the characteristics of energy consumption, and the metric of advanced energy cost to make forwarding decisions, and dynamically adjusts its transmission power to just reach the selected node. Simulation results demonstrate that our scheme exhibits higher energy efficiency, smaller end‐to‐end delay, and better packet delivery ratio compared to other geographic routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Wide range of applications such as disaster management, military and security have fueled the interest in sensor networks during the past few years. Sensors are typically capable of wireless communication and are significantly constrained in the amount of available resources such as energy, storage and computation. Such constraints make the design and operation of sensor networks considerably different from contemporary wireless networks, and necessitate the development of resource conscious protocols and management techniques. In this paper, we present an energy‐efficient, scalable and collision‐free MAC layer protocol for sensor networks. The approach promotes time‐based arbitration of medium access to limit signal interference among the transmission of sensors. Transmission and reception time slots are prescheduled to allow sensors to turn their radio circuitry off when not engaged. In addition, energy consumption due to active to sleep mode transitions is minimized through the assignment of contiguous transmission/reception slots to each sensor. Scalability of the approach is supported through grouping of sensors into clusters. We describe an optimization algorithm for energy conscious scheduling of time slots that prevents intra‐cluster collisions and eliminates packet drop due to buffer size limitations. In addition, we also propose an arbitration scheme that prevents collisions among the transmission of sensors in different clusters. The impact of our approach on the network performance is qualified through simulation.. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Satisfying the different requirements of applications is important in multi‐hop cognitive radio networks, because the spectrum resources change dynamically and the requirements for various applications could be very different. In this paper, we propose new schemes of channel allocation and route selection for real‐time and non‐real‐time applications to tackle this challenge. Our scheme is flexible so that it can adapt to the different application requirements, and it can provide enough throughput while maintaining the packet loss rate and transmission rate requirements. First, we give the network model in a cognitive radio network environment, and show how to calculate the capacity of the route in multi‐hop cognitive radio networks. Second, we formulate optimization problems to fulfill the rate requirements of different applications for each unicast session. We also consider the primary user activities, channel availability, interface and interference constraint. We propose the corresponding routing and channel allocation schemes for different application scenarios. Third, we propose an admission control scheme to study the impact of application requirements for multiple sessions in cognitive radio networks. Finally, we implement simulations to show the performance of our schemes and compare them with existing schemes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Innovative and emerging developments in sensor networks are proven to be the backbone for real‐time applications such as satellite communications, military and border area surveillance systems, health care systems, traffic monitoring systems, seismic and underwater monitoring systems, and agriculture and habitat environment systems. Coverage and clustering techniques enable the sensor network to operate in group‐based and region‐based communication and thus save the node energy. Energy‐efficient protocols save the node energy and increase the network life cycle in a resource‐constrained sensor network. Cluster head (CH) node manages and controls the operations such as network topology, coverage area, and routing paths (multi‐paths and fault‐tolerant paths) of the network. In this paper, we present deterministic K‐means secure coverage clustering (K‐SCC) with periodic authentication. The proposed protocol uses coverage clustering technique with periodic authentication between the CH node and sensor nodes to establish the secure channel in the network. Maximum cover of K nodes is maintained in the secure coverage cluster to achieve authenticated communication between the sensor nodes in the network. The proposed K‐SCC protocol is compared with the existing protocols such as deterministic‐SCC and random‐SCC protocols. Simulation results indicate that the proposed K‐SCC protocol achieves an average of 84% coverage ratio (cluster/sensor node ratio) as compared with 62% coverage ratio in the existing SCC protocols. Simulations also indicate that the proposed K‐SCC protocol consumes 20% less energy as compared with the existing SCC protocol. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Sensor node energy conservation is the primary design parameters in wireless sensor networks (WSNs). Energy efficiency in sensor networks directly prolongs the network lifetime. In the process of route discovery, each node cooperates to forward the data to the base station using multi‐hop routing. But, the nodes nearer to the base station are loaded more than the other nodes that lead to network portioning, packet loss and delay as a result nodes may completely loss its energy during the routing process. To rectify these issues, path establishment considers optimized substance particle selection, load distribution, and an efficient slot allocation scheme for data transmission between the sensor nodes in this paper. The selection of forwarders and conscious multi‐hop path is selected based on the route cost value that is derived directly by taking energy, node degree and distance as crucial metrics. Load distribution based slot allocation method ensures the balance of data traffic and residual energy of the node in areal‐time environment. The proposed LSAPSP simulation results show that our algorithm not only can balance the real‐time environment load and increase the network lifetime but also meet the needs of packet loss and delay.  相似文献   

19.
Wireless sensor network (WSN) should be designed such that it is able to identify the faulty nodes, rectify the faults, identify compromised nodes from various security threats, and transmit the sensed data securely to the sink node under faulty conditions. In this paper, we propose an idea of integrating fault tolerance and secured routing mechanism in WSN named as fault tolerant secured routing: an integrated approach (FASRI) that establishes secured routes from source to sink node even under faulty node conditions. Faulty nodes are identified using battery power and interference models. Trustworthy nodes (non‐compromised) among fault‐free nodes are identified by using agent‐based trust model. Finally, the data are securely routed through fault‐free non‐compromised nodes to sink. Performance evaluation through simulation is carried out for packet delivery ratio, hit rate, computation overhead, communication overhead, compromised node detection ratio, end‐to‐end delay, memory overhead, and agent overhead. We compared simulation results of FASRI with three schemes, namely multi‐version multi‐path (MVMP), intrusion/fault tolerant routing protocol (IFRP) in WSN, and active node‐based fault tolerance using battery power and interference model (AFTBI) for various measures and found that there is a performance improvement in FASRI compared with MVMP, IFRP, and AFTBI. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Unlike terrestrial sensor networks, underwater sensor networks (UWSNs) have salient features such as a long propagation delay, narrow bandwidth, and high packet loss over links. Hence, path setup‐based routing protocols proposed for terrestrial sensor networks are not applicable because a large latency of the path establishment is observed, and packet delivery is not reliable in UWSNs. Even though routing protocols such as VBF (vector based forwarding) and HHVBF (hop‐by‐hop VBF) were introduced for UWSNs, their performance in terms of reliability deteriorates at high packet loss. In this paper, we therefore propose a directional flooding‐based routing protocol, called DFR, in order to achieve reliable packet delivery. DFR performs a so‐called controlled flooding, where DFR changes the number of nodes which participate in forwarding a packet according to their link quality. When a forwarding node has poor link quality to its neighbor nodes geographically advancing toward the sink, DFR allows more nodes to participate in forwarding the packet. Otherwise, a few nodes are enough to forward the packet reliably. In addition, we identify two types of void problems which can occur during the controlled flooding and introduce their corresponding solutions. Our simulation study using ns‐2 simulator proves that DFR is more suitable for UWSNs, especially when links are prone to packet loss. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号