首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
水声目标识别的任务是通过采集到水声目标的信号来对目标进行分类,在海洋勘探,监听技术等领域有着非常重要和广泛的应用.由于海洋环境的复杂性,以及船只目标发动机的多样性以及噪声的存在,水声目标识别是一个困难的任务.传统的特征提取方法无法提取到足够有效的特征表示,充分地表示目标.为了解决这个问题,本文提出了一种基于改进的视觉化...  相似文献   

2.
为提高车辆识别的准确率及识别的实时性能, 本文提出了一种基于迁移学习的车辆识别方法. 该方法通过卷积神经网络和支持向量机结合并做进一步优化, 提高车辆识别的准确率, 并减少模型训练时间和提高模型的鲁棒性. 该方法首先使用卷积神经网络在CIFAR-10数据集上训练好网络; 然后结合残差优化的思想, 使用更深的预训练网络结构提取细粒度特征; 在模型网络的参数迁移过程中, 只迁移预训练的卷积层参数, 并添加全连接层在车辆数据集上进行微调; 最后将提取的特征直接放入支持向量机中进行分类. 通过详细的模型实验与结果分析, 本方法能够最终达到的最高识别正确率为97.56%, 单张图片识别时间260 ms, 识别时间和正确率均得到了较好的优化.  相似文献   

3.
水声信号识别近年来备受关注,由于海洋信道具有时变空变性、信号传播的衰落特性和水下目标声源具有复杂多变性,水声信号识别任务面临巨大挑战.传统的水声信号识别方法难以充分获取目标的表征信息且不具备良好的抗噪声能力,识别效果有待提升.针对上述问题,本文提出一种基于多分支外部注意力网络(multi-branch external attention network, MEANet)的水声信号识别方法,可以在复杂海洋环境下充分获取水声信号的特征并进行识别. MEANet由多分支主干网络,通道、空间注意力模块和外部注意力模块组成.首先,输入数据通过多个并行的主干网络分支,提取水声信号不同层级的特征信息;其次,辅以通道、空间注意力模块对水声信号的通道和空间维度分别进行加权,调节不同通道和空间位置对特征表示的重要性;最后,整合外部注意力模块,以外部记忆单元和附加计算来引导网络的特征提取和预测,从而显著提高模型的识别率和鲁棒性.实验结果表明,本文提出的MEANet在ShipsEar数据集上的水声信号识别率达到98.84%,显著优于其他对比算法,证实了其有效性.  相似文献   

4.
针对传统工业机器人辨识复杂工件困难、识别度单一等问题,提出一种基于迁移学习的视觉识别与分拣策略。高精度工业相机拍摄到的图片经过HALCON软件图像膨胀、腐蚀等处理之后,导入Pytorch中的神经网络模型,利用迁移学习对目标进行识别分类,最终实现工业机器人智能分拣的目的。实验中,在UR5机器人平台上以形状多变的两种菇类为对象进行迁移学习,进而完成识别及分拣。实验结果表明该策略具备良好的准确性和稳定性。  相似文献   

5.
传统的交通标志识别方法主要基于特征提取和机器学习技术,易受外部环境干扰,特征学习和特征表达能力较弱,识别准确率低。而基于深度学习的交通标志识别,对学习数据要求较高,模型在小样本数据学习中学习效率低。针对上述问题,提出了一种基于迁移学习的交通标志识别方法。该方法首先将ImageNet数据集中训练好的Inceptionv3模型的卷积层和瓶颈层进行迁移;然后在瓶颈层后接上全链接层,从而构建出迁移学习的模型;最后利用公开数据集和公开场景的交通标志图像进行实验训练模型验证。实验结果表明,与现有主流的交通标志识别方法相比,所提方法在微量数据集下有较高的识别率,预测准确率达96%以上。  相似文献   

6.
葛轶洲  姚泽  张歆  周青 《计算机仿真》2024,(2):13-16+33
水声目标识别技术在水下信息处理中起着非常重要的作用,从辐射噪声中提取水声目标的有效特征一直都是水声目标识别技术的难点所在。提出了一种利用水声目标辐射噪声的梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients, MFCC)作为目标特征提取的方法。通过对辐射噪声信号进行梅尔频率滤波得到目标噪声信号的MFCC特征,它模拟了人耳对不同频率的声音具有不同感知能力的听觉非线性效应,因此具有良好的识别效果。通过对实际水声目标的辐射噪声进行测试实验,提取目标噪声信号的MFCC特征向量,并运用K近邻算法对其进行分类识别,实验结果显示MFCC特征提取与分类识别算法对水声目标的识别率达到85%以上。  相似文献   

7.
对未知信号噪声分布形式完成学习识别做了最简单明确的论述:通过给出的评价函数,按概率逼近法得L维可变系数矢量C的学习算法,实现识函数有教练学习,识别函数无教练学习和自适应型相关滤波的学习。自适应相关滤波器的学习是无教练的,不是根据g(y)的码元进行,它大体上收敛于信号波形。  相似文献   

8.
9.
随着我国油气勘探技术的发展,裂缝性储积层在油气的勘探开发中发挥着越来越重要的作用.现有的裂缝识别仍然局限于人工分割裂缝部分再进行分类,没法从整个油井地下的成像测井图像中检测出裂缝的存在.该文针对测井数据和图像资料,研究了裂缝经Hough变换后的正弦曲线特性,由此人工制造了大量图像代替成像数据进行标注,并应用目标检测相关...  相似文献   

10.
行人再识别指的是在无重叠的多摄像机监控视频中,匹配不同摄像机中的行人目 标。提出了一种基于迁移学习的行人再识别方法。在训练阶段,针对现有的基于深度卷积神经 网络的图像识别模型进行参数微调,将网络模型迁移学习至行人再识别模型。测试阶段,利用 学习好的网络模型提取行人图像的特征,再采用余弦距离来描述行人对之间的相似度。在 CUHK03、Market-1501 和 DukeMTMC-reID 3 个数据集上进行了深入的实验分析,实验结果表 明该方法取得了较高的累积匹配得分,特别是第 1 匹配率远远超过了非深度学习的方法,与其 他基于深度学习的行人再识别方法相比,准确率也有所提升。  相似文献   

11.
音频分类是提取音频结构和内容语义的重要手段,是基于内容的音频检索和分析的基础.本文对几种常用的音频分类算法作了综述,介绍了最小距离法、神经网络、支持向量机、决策树方法、隐马尔可夫模型等典型算法的特征,并对它们的优缺点进行了比较.  相似文献   

12.
获取运河过往船只的身份信息具有重要意义,快速、准确地定位船牌是实现船只身份自动化识别的首要任务.为提升对小尺度船牌的检测性能,提出一种结合深度特征迁移与融合的两阶段船牌定位算法.首先在船只检测阶段,通过迁移学习构建船只检测模型,获取图片中船只区域的位置信息;然后在船牌定位阶段,提出基于特征融合策略的多尺度船牌定位网络,在上一阶段的基础上对船牌进行定位.在SLPLOC船牌定位数据集上的实验结果表明,相比其他算法,该算法能够有效地减少误差,提升精度值和召回率.  相似文献   

13.
一种基于融合重构的子空间学习的零样本图像分类方法   总被引:1,自引:0,他引:1  
图像分类是计算机视觉中一个重要的研究子领域.传统的图像分类只能对训练集中出现过的类别样本进行分类.然而现实应用中,新的类别不断涌现,因而需要收集大量新类别带标记的数据,并重新训练分类器.与传统的图像分类方法不同,零样本图像分类能够对训练过程中没有见过的类别的样本进行识别,近年来受到了广泛的关注.零样本图像分类通过语义空间建立起已见类别和未见类别之间的关系,实现知识的迁移,进而完成对训练过程中没有见过的类别样本进行分类.现有的零样本图像分类方法主要是根据已见类别的视觉特征和语义特征,学习从视觉空间到语义空间的映射函数,然后利用学习好的映射函数,将未见类别的视觉特征映射到语义空间,最后在语义空间中用最近邻的方法实现对未见类别的分类.但是由于已见类和未见类的类别差异,以及图像的分布不同,从而容易导致域偏移问题.同时直接学习图像视觉空间到语义空间的映射会导致信息损失问题.为解决零样本图像分类知识迁移过程中的信息损失以及域偏移的问题,本文提出了一种图像分类中基于子空间学习和重构的零样本分类方法.该方法在零样本训练学习阶段,充分利用未见类别已知的信息,来减少域偏移,首先将语义空间中的已见类别和未见类别之间的关系迁移到视觉空间中,学习获得未见类别视觉特征原型.然后根据包含已见类别和未见类别在内的所有类别的视觉特征原型所在的视觉空间和语义特征原型所在的语义空间,学习获得一个潜在类别原型特征空间,并在该潜在子空间中对齐视觉特征和语义特征,使得所有类别在潜在子空间中的表示既包含视觉空间下的可分辨性信息,又包含语义空间下的类别关系信息,同时在子空间的学习过程中利用重构约束,减少信息损失,同时也缓解了域偏移问题.最后零样本分类识别阶段,在不同的空间下根据最近邻算法对未见类别样本图像进行分类.本文的主要贡献在于:一是通过对语义空间中类别间关系的迁移,学习获得视觉空间中未见类别的类别原型,使得在训练过程中充分利用未见类别的信息,一定程度上缓解域偏移问题.二是通过学习一个共享的潜在子空间,该子空间既包含了图像视觉空间中丰富的判别性信息,也包含了语义空间中的类别间关系信息,同时在子空间学习过程中,通过重构,缓解知识迁移过程中信息损失的问题.本文在四个公开的零样本分类数据集上进行对比实验,实验结果表明本文提出的零样本分类方法取得了较高的分类平均准确率,证明了本文方法的有效性.  相似文献   

14.
    
Abstract: Features are used to represent patterns with minimal loss of important information. The feature vector, which is composed of the set of all features used to describe a pattern, is a reduced‐dimensional representation of that pattern. Medical diagnostic accuracies can be improved when the pattern is simplified through representation by important features. By identifying a set of salient features, the noise in a classification model can be reduced, resulting in more accurate classification. In this study, a signal‐to‐noise ratio saliency measure was employed to determine the saliency of input features of recurrent neural networks (RNNs) used in classification of ophthalmic arterial Doppler signals. Eigenvector methods were used to extract features representing the ophthalmic arterial Doppler signals. The RNNs used in the ophthalmic arterial Doppler signal classification were trained for the signal‐to‐noise ratio screening method. The application results of the signal‐to‐noise ratio screening method to the ophthalmic arterial Doppler signals demonstrated that classification accuracies of RNNs with salient input features are higher than those of RNNs with salient and non‐salient input features.  相似文献   

15.
汪涛  王洋  赵德鑫 《智能安全》2024,3(2):70-75
随着陆海空一体化6G通信网络的不断发展,水声调制信号识别技术在民用和军用领域中均具有十分重要的意义与价值,以保障通信系统的信息安全。本文首先从现有的识别方法入手,对经典的水声通信调制识别方法进行了系统梳理;其次,设计了一种迁移学习策略的水声通信调制识别方法,并通过水声信道建模生成了4种典型水声通信信号的数据集(包括BPSK、QPSK、2FSK和4FSK),采用小波方法获取信号时频特征,基于迁移学习理论设计AlexNet网络,以实现水声通信信号的调制方式识别。仿真实验结果表明,所提出方法在低信噪比下的识别率均能保持在85%以上,具有较好的识别性能。  相似文献   

16.
魏玮  赵露  刘依 《测控技术》2020,39(2):115-120
人脸姿态分类在智能人机交互、虚拟现实、智能控制以及人脸识别等多个领域都有广泛的应用。由于人脸姿态分类过程中存在不同角度间特征重叠率高的问题,导致其分类精度过低。为提高人脸姿态分类的准确率与鲁棒性,提出了基于迁移学习的人脸姿态分类方法。该方法利用卷积神经网络的特征提取和学习能力,对特征进行识别和分类,从而得到单方向人脸姿态的训练参数。利用迁移学习,将卷积神经网络训练好的参数应用于训练两个方向的人脸姿态模型中。使用该方法在CAS-PEAL数据集上进行了实验,最终结果的准确率达到98. 7%,并且与AlexNet、VGGNet和ResNet等网络模型做对比实验,得到了更好的人脸姿态分类效果。实验结果表明,所提出的方法显著提高了人脸姿态分类的准确率与鲁棒性。  相似文献   

17.
基于深度模型迁移的细粒度图像分类方法   总被引:1,自引:0,他引:1  
刘尚旺  郜翔 《计算机应用》2018,38(8):2198-2204
针对细粒度图像分类方法中存在模型复杂度较高、难以利用较深模型等问题,提出深度模型迁移(DMT)分类方法。首先,在粗粒度图像数据集上进行深度模型预训练;然后,使用细粒度图像数据集对预训练模型logits层进行不确切监督学习,使其特征分布向新数据集特征分布方向迁移;最后,将迁移模型导出,在对应的测试集上进行测试。实验结果表明,在STANFORD DOGS、CUB-200-2011、OXFORD FLOWER-102细粒度图像数据集上,DMT分类方法的分类准确率分别达到72.23%、73.33%和96.27%,验证了深度模型迁移方法在细粒度图像分类领域的有效性。  相似文献   

18.
传统上下文在分类研究中通常存在失真和有效性等问题。引入研究对象领域的相似领域作为上下文,借助迁移学习理论,使用结构化相似性学习方法构建研究对象领域和其相似领域间的低维共享特征,提出一种基于相似领域共享特征的分类学习模型。实验以QQ空间的个性化设置数据作为上下文,对用户电子商务网站页面的风格偏好进行分类,验证了所提模型的可行性和有效性。  相似文献   

19.
在音乐流派分类过程中,音乐流派局部特征与整体特征不一致时,通常采用的局部特征投票取最大的方法(MaxVote)在音频片段流派分类精度不高,而流派特征分布比较均衡时分类结果不合理。针对以上问题,该文提出基于音乐片段流派分布特征的神经网络投票机制(NNVote)和结合高层音乐节奏特征的RhythmNNVote投票方法。实验结果表明,NNVote方法在7个流派上的分类总精度达到68.9%,较MaxVote提高将近10%。  相似文献   

20.
为实现更为准确的甲状腺结节良恶性超声图像诊断,避免不必要的穿刺或活检手术,提出了一种基于卷积神经网络(CNN)的常规超声成像和超声弹性成像的特征结合方法,提高了甲状腺结节良恶性分类准确率。首先,卷积网络模型在大规模自然图像数据集上完成预训练,并通过迁移学习的方式将特征参数迁移到超声图像域用以生成深度特征并处理小样本。然后,结合常规超声成像和超声弹性成像的深度特征图形成混合特征空间。最后,在混合特征空间上完成分类任务,实现了一个端到端的卷积网络模型。在1156幅图像上进行实验,所提方法的准确率为0.924,高于其他单一数据源的方法。实验结果表明,浅层卷积共享图像的边缘纹理特征,高层卷积的抽象特征与具体的分类任务相关,使用迁移学习的方法可以解决数据样本不足的问题;同时,弹性超声影像可以对甲状腺结节的病灶硬度进行客观的量化,结合常规超声的纹理轮廓特征,二者融合的混合特征可以更全面地描述不同病灶之间的差异。所提方法可以高效准确地对甲状腺结节进行良恶性分类,减轻患者痛苦,给医生提供更为准确的辅助诊断信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号