首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, an opportunistic relaying‐based incremental hybrid decode‐amplify‐forward (OR‐IHDAF) scheme that combines robust protocol switch with efficient relay selection is proposed in multi‐relay scenario to cope with the complex and variable channel environments. The proposed OR‐IHDAF scheme can improve the system performance significantly compared with the incremental hybrid decode‐amplify‐forward protocol with the increase of the possible candidate relay nodes and opportunistic relay selection. The analytical expression of the system outage probability of the OR‐IHDAF scheme is presented based on the probability density function and cumulative distribution function, which might be useful to avoid lengthy simulations. Numerical results show the correctness of our theoretical analysis and the performance improvement of the OR‐IHDAF scheme compared with the other current hybrid cooperative protocols and OR‐based cooperative schemes. The effects of the power allocation schemes on the outage probability are also provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Various sectors are likely to carry a set of emerging applications while targeting a reliable communication with low latency transmission. To address this issue, upon a spectrally‐efficient transmission, this paper investigates the performance of a 1 full‐dulpex relay system and considers for that purpose, 2 basic relaying schemes, namely, the symbol‐by‐symbol transmission, i.e., amplify‐and‐forward and the block‐by‐block transmission, i.e., selective decode‐and‐forward. The conducted analysis presents an exhaustive comparison, covering both schemes, over 2 different transmission modes, i.e., the noncombining mode where the best link, direct, or relay link is decoded and the signals combining mode, where direct and relay links are combined at the receiver side. While targeting latency purpose as a necessity, simulations show a refined results of performed comparisons and reveal that amplify‐and‐forward relaying scheme is more adapted to combining mode, whereas the selective decode‐and‐forward relaying scheme is more suitable for noncombining mode.  相似文献   

3.
We address the outage performance for the opportunistic amplify‐and‐forward relaying strategies under Nakagami‐m fading channels. A closed‐form expression for the outage probability is derived. Simulation results verify our theoretical solutions.  相似文献   

4.
This paper shows the analytical performance expressions of M‐ary quadrature amplitude modulation burst symbol transmission for hybrid decode‐or‐amplify‐forward (HDAF) relay schemes over quasi‐static Rayleigh‐fading channels. First, we derive the probability density function of the received instantaneous signal‐to‐noise ratio as the simplified form, which is related to all the possible occurrence probabilities of error‐events for M‐ary quadrature amplitude modulation burst transmission. On the basis of the derived probability density function, we express average bit error probability, average symbol error probability, and average burst error rate as closed forms, which can be also applied to both amplify‐and‐forward and adaptive decode‐and‐forward (ADF) schemes. The analysis and simulation results show that HDAF scheme for burst transmission can achieve the performance of ADF scheme with symbol‐by‐symbol transmission, which is the achievable lower bound. Furthermore, the outage probability, the normalized channel capacity, and the goodput performance are also derived as closed forms. The analysis shows the superiority of HDAF scheme to ADF scheme. Comparison with simulations confirms that the derived analytical expressions are accurate over all signal‐to‐noise ratio regions and for different numbers of relays and modulation orders.  相似文献   

5.
The outage performance of the amplify‐and‐forward relaying strategies over mutually uncorrelated extended generalized‐K fading channels is addressed in this paper. The attention is dedicated to the analyses of the noise‐limited and also interference‐limited environment. The new analytical expression for outage probability of observed relaying system in the presence of thermal noise is derived using the method for approximating equivalent signal‐to‐noise ratio. In addition, the outage performance is studied for the dual‐hop system when only the single dominant co‐channel interference is inherent at the relay and destination node. The correctness of the proposed mathematical derivations is verified by simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a cooperative spectrum sharing protocol using non‐orthogonal multiple access in cognitive radio networks. A 2‐phase protocol comprising of a primary transmitter‐receiver pair and a secondary transmitter‐receiver pair is considered. In the proposed protocol, 3 data symbols can be transmitted during the 2 phases; this is unlike the traditional decode‐and‐forward relaying where 1 data symbol can be transmitted and the conventional superposition coding–based overlay spectrum sharing and the cooperative relaying system using non‐orthogonal multiple access where 2 data symbols can be transmitted, under a single‐relay scenario. We have investigated performance of our proposed protocol in terms of ergodic sum capacity and outage probability along with analytical derivations over independent Rayleigh fading channels. We also compared our proposed protocol with the traditional decode‐and‐forward relaying, conventional superposition coding–based overlay spectrum sharing, and the cooperative relaying system using non‐orthogonal multiple access schemes to demonstrate efficacy of the proposed protocol. The simulation and analytical results are presented to confirm efficiency of the proposed spectrum sharing protocol.  相似文献   

7.
In this paper, the exact analysis of a multihop multibranch (MHMB) relaying network is investigated wherein each relay can operate in amplify‐and‐forward (AF) or decode‐and‐forward (DF) modes depending upon the decoding result of its received signal. If a relay decodes the received signal correctly, it works in DF mode; otherwise, the relay operates in AF mode. Therefore, we name such relaying network as hybrid amplify‐and‐forward and decode‐and‐forward (hybrid AF/DF) relaying network. We first investigate the signal transmission from source to destination node via n number of relays in a hybrid AF/DF MHMB mode. Then, we obtained the statistical features and analyze the end‐to‐end signal‐to‐noise ratio (SNR). Finally, a comprehensive performance analysis is conducted by using maximal ratio combining (MRC) scheme at the destination node. For comparison, we also obtained the results using selection combining (SC) scheme at the destination node. To the best of our knowledge, very few works in the literature have considered a general system model of MHMB relaying network wherein each relay can operate in AF or DF modes, that is, a hybrid AF/DF relaying network. Accordingly, the analysis of our system model is not only novel and exact, but also is comprehensive and can be employed in the future works.  相似文献   

8.
Recent advances in the field of wireless communication have proven the importance of diversity in combating channel fading and improving the bit error rates (BERs). In this report, a dual‐hop decode‐amplify‐forward (DAF) transmission system over Nakagami‐m fading channel is studied. The DAF relay system is a hybrid of decode‐and‐forward and amplify‐and‐forward relay systems that shows the benefits of both decode‐and‐forward and amplify‐and‐forward relay systems and is also called hybrid relay system or hybrid DAF relay system. Signal‐to‐noise ratios and BERs for various system models with varying number of transmit and receive antennas have been discussed. The diversity is achieved in two ways: firstly, by the use of relay and secondly, by the use of multiple antennas at both the transmitter and the receiver. Dual‐hop relaying gives better trunking efficiency and with single antenna at the relay site acquisition and antenna structures are much less expensive. The variations in the performance levels when the relay is moved to different locations within the line of sight of the transmitter and the receiver have also been analyzed. BERs with respect to variations in the fading parameter ‘m’ have also been presented and discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper investigates the error performance of three relaying protocols with multiple decode‐and‐forward relays. In the first protocol, relays that can decode correctly will forward the signals from source. Nevertheless, selection cooperation (SC) and opportunistic relaying (OR) are adopted to select only a single relay to forward in the other two protocols, respectively. At sufficiently high signal‐to‐noise ratio, the upper bounds on bit error probability are derived for three protocols, where the developments apply for various channel fading models. Simulation results are provided to verify the tightness of the analytical bounds, and the performance comparisons among different relaying protocols are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Recently, efficient partial relay selection (e‐PRS) was proposed as an enhanced version of PRS. In comparing e‐PRS, PRS, and the best relay selection (BRS), there is a tradeoff between complexity and performance; that is, the complexity for PRS, e‐PRS, and BRS is low to high, respectively, but vice versa for performance. In this paper, we study the outage probability for e‐PRS in decode‐and‐forward (DF) relaying systems over non‐identical Nakagami‐m fading channels, where the fading parameter m is an integer. In particular, we provide closed‐form expressions of the exact outage probability and asymptotic outage probability for e‐PRS in DF relaying systems. Numerical results show that e‐PRS achieves similar outage performance to that of BRS for a low or medium signal‐to‐noise ratio, a high fading parameter, a small number of relays, and a large difference between the average channel powers for the first and the second hops.  相似文献   

11.
We consider a multi‐source two‐way relay network, in which one source communicates with N other sources (n = 1,2,…,N) with the help of a single amplify‐and‐forward relay. We propose two opportunistic source scheduling schemes in such a network. According to the proposed schemes, in each transmission interval, only a single out of the N sources is selected, and this selected node acts as either transmitter or receiver depending on the channel conditions. For both schemes, tight closed‐form lower bounds of outage probability and bit error rate (BER) are derived. Asymptotic outage probability and BER that are valid for high signal‐to‐noise ratio regime are also analyzed, which can provide important insights on the impact of system parameters. The analytical results show that the full diversity order N + 1 can be achieved by both proposed schemes. Simulation results are also presented to corroborate the analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we propose a novel cooperative relaying scheme with multiple relays for frequency selective wireless environment. In our proposed scheme, the frequency selective wireless channel is divided into flat fading sub‐channels. Cooperative relaying is then employed over each sub‐channel to improve the system diversity order. We then investigate the asymptotic behavior of the outage probability and show that the proposed scheme achieves full diversity order in both amplify and forward (AF) and adaptive decode and forward (ADF) relaying scenarios. Furthermore, we propose a power allocation strategy to minimize the system outage probability. Simulation results confirm our analysis and show that the proposed power allocation method outperforms uniform power allocation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a fixed‐gain amplify‐and‐forward relaying under non‐ideal hardware is analyzed. The relaying system is impaired because of relay's power amplifier (PA) nonlinearity and in‐phase and quadrature‐phase (IQ) imbalance at a destination. Closed‐form expressions for outage probability as well as ergodic capacity approximation and its upper bound are derived. Also, the outage probability and the ergodic capacity asymptotic expressions in the high signal‐to‐noise ratio are deduced. For the first time, the joint influence of PA nonlinearity and IQ imbalance on the system in terms of outage probability, symbol error rate, and ergodic capacity is investigated. The results are compared with the respect to soft envelope limiter and traveling‐wave tube amplifier at the relay. Based on the analytical and the numerical results, important insights into the impact of IQ imbalance and nonlinearity of the aforementioned PA models on the system performance are gained as well as valuable information on the performance of practically deployed fixed‐gain amplify‐and‐forward relaying system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The deployment of an incremental hybrid decode-amplify and forward relaying scheme is a promising and superior solution for cellular networks to meet ever-growing network traffic demands. However, the selection of a suitable relaying protocol based on the signal-to-noise ratio threshold is important in realizing an improved quality of service. In this paper, an incremental hybrid relaying protocol is proposed using polar codes. The proposed protocol achieves a better performance than existing turbo codes in terms of capacity. Simulation results show that the polar codes through an incremental hybrid decode-amplify-and-forward relay can provide a 38% gain when γth(1) and γth(2) are optimal. Further, the channel capacity is improved to 17.5 b/s/Hz and 23 b/s/Hz for 2 × 2 MIMO and 4 × 4 MIMO systems, respectively. Monte Carlo simulations are carried out to achieve the optimal solution.  相似文献   

15.
Modified transmit antenna selection (TAS)/orthogonal space‐time block coding (OSTBC) (M‐TAS/OSTBC) schemes have been shown to achieve superior error performance together with a reduced‐rate feedback channel in the presence of feedback errors (FEs) when compared with the conventional TAS/OSTBC (C‐TAS/OSTBC) schemes. This paper focuses on the bringing of fixed‐gain amplify‐and‐forward (FGAF) relaying schemes that employ M‐TAS/OSTBC schemes at both hops that provides reduced feedback‐rate and robust error performance in the presence of erroneous‐feedback channels. The exact expressions of the outage and error probabilities for both dual‐hop FGAF relaying schemes in Nakagami‐m fading channels have been derived and validated via Monte Carlo simulations. Additionally, with the help of high signal‐to‐noise ratio (SNR) (i.e., asymptotic) approaches and some analytical approximations, the asymptotic diversity order analysis has been carried out. Besides, by providing a simulation‐based examination on the inclusion of power allocation within the modified scheme, the additional advantages on the performance have been exhibited. The extensive investigation and comparisons to the conventional schemes have shown that M‐TAS/OSTBC schemes employed at each transmission link provide full diversity order and considerable error performance as the C‐TAS/OSTBC scheme in ideal feedback cases and also achieve more robust error performance in the presence of FEs. Thus, by using M‐TAS/OSTBC schemes, the overall performances of the dual‐hop FGAF relaying schemes have been enhanced, which would result in reductions on the average SNR requirements to achieve a specified error rate constraint. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This paper considers the cognitive radio network with one primary user (PU), one secondary user (SU), and multiple decode‐and‐forward relays. We propose a relaying scheme to ensure the priority of primary transmission, where the relays are used to forward PU's message and sometimes also SU's message. First, SU is allowed to use the spectrum to transmit only when its transmission would not affect the decoding status of PU's message at all relays. Second, once the secondary transmission happens, the relays that successively decode SU's message are allowed to retransmit this message when it would not affect the decoding status of PU's message at primary receiver. The interference from PU to SU and the interference from SU to PU are both considered. By analyzing the decoding status of primary message and secondary message at different relays, we formulate the outage probabilities of both primary transmission and secondary transmission. When all channels follow Rayleigh distributions, we derive the analytical expressions for the general case of any number of relays, which are validated by means of Monte Carlo simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Exact expressions for outage probability and symbol error rate are presented for a decode‐and‐forward cooperative network with partial relay selection. An independent but not identically distributed Nakagami‐m fading environment is considered. Numerical and simulated results show the validity of the analytical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Relay communications have attracted increasing research attentions as a cost‐effective technique to improve spatial diversity, service coverage, and energy efficiency in wireless networks. However, existing relay schemes (e.g., amplify‐and‐forward and decode‐and‐forward (DF) schemes) still face several major challenges, particularly the accumulation of multipath channels effect in AF and long processing latency in DF. To address these issues, we propose a novel equalize‐and‐forward (EF) relay scheme to enhance the retransmission reliability while maintaining low processing delay at the relay node. In particular, the proposed EF relay estimates and equalizes the channel between source and relay to eliminate the channel accumulation effect without signal regeneration. To further reduce the relay processing time, the channel estimation and equalization in the proposed EF design are performed in parallel. The proposed equalization is realized by presetting the equalizer coefficients with the current channel response that is predicted in parallel using multiple past channel responses. Numerical results show that the proposed EF relay scheme can achieve comparable symbol error rate performance as the DF relay with much less relay latency. In addition, the EF relay exhibits low outage probability at the same data rate as compared with traditional amplify‐and‐forward and DF schemes. schemes. Copyright © 2015 John Wiley & Sons, Ltd  相似文献   

19.
A kind of amplify‐and‐forward (AF) and decode‐and‐forward (DF) mixed relay communication system is proposed in this letter. The source broadcasts the signal to all the relays. Relays that can decode the signal adopt DF scheme to retransmit the signal, while the rest adopt AF scheme for retransmission. The destination employs maximum ratio combining technique to maximize the received signal‐to‐noise ratio. Another situation concerned in this letter is that when the relay cannot decode the source signal, it may retransmit the interference signal with AF scheme. Closed‐form expressions of outage probability are derived. Simulation results show that the analytical curves agree with the simulated ones very well, and the AF‐DF mixed relay system can improve the availability of the relays. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we propose two schemes based on a full‐duplex network‐coded cooperative communication (FD‐NCC) strategy, namely, full‐duplex dynamic network coding (FD‐DNC) and full‐duplex generalized dynamic network coding (FD‐GDNC). The use of full‐duplex communication aims at improving the spectrum efficiency of a two‐user network where the users cooperatively transmit their independent information to a common destination. In the proposed FD‐NCC schemes, the self‐interference imposed by full‐duplexing is modeled as a fading channel, whose harmful effect can be partially mitigated by interference cancellation techniques. Nevertheless, our results show that, even in the presence of self‐interference, the proposed FD‐NCC schemes can outperform (in terms of outage probability) the equivalent half‐duplex network‐coded cooperative (HD‐NCC) schemes, as well as traditional cooperation techniques. Moreover, the ?‐outage capacity, that is, the maximum information rate achieved by the users given a target outage probability, is evaluated. Finally, we examine the use of multiple antennas at the destination node, which increases the advantage of the FD‐NCC (in terms of the diversity‐multiplexing trade‐off and ?‐outage capacity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号