首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The morphology as well as the distribution of conductive fillers in conductive filler/polymer nanocomposites have a decisive effect on the dielectric properties of blend composites. In this study, the relationship between morphology and properties was carefully investigated and the underlying mechanism is discussed based on the microcapacitor model. Multiwalled carbon nanotubes (CNTs) were introduced into an immiscible poly(vinylidene fluoride) (PVDF)/polyamide 6 (Nylon 6) blend and the morphologies of PVDF/Nylon 6 were tailored by changing the weight ratio of PVDF to Nylon 6, varying from sea‐island morphology to co‐continuous morphology. Interestingly, the CNTs are selectively localized in the Nylon 6 phase in both sea‐island and co‐continuous morphological blends, which is due to the finer interaction between Nylon 6 and CNTs. In the sea‐island morphological blend only, a strong increase of the dielectric permittivity can be found when the content of CNTs is increased. It is surprising that no effects of CNTs on the dielectric properties can be found in the co‐continuous morphological blend. The CNT filled Nylon 6 domains in the sea‐island morphological blend act as a microcapacitor with improved charge accumulation and interfacial polarization, resulting in a marked increase in dielectric permittivity. © 2016 Society of Chemical Industry  相似文献   

2.
An elastomer/rigid particle filler with core–shell structure was prepared by twin‐screw extruder according to an encapulation model. It was used to toughen and reinforce polypropylene (PP). An original idea of a one‐step processing method was adopted in creating PP/polyoctene–ethylene/talc ternary composites. The rheological behavior of PP was changed and the mechanical properties were improved. SEM observation showed that the core–shell structured filler dispersed better in copolypropylene than in homopolypropylene. Two reasons were proposed and proved by the rheology test and SEM observation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2397–2403, 1999  相似文献   

3.
We toughened poly(butylene terephthalate) (PBT) by loading core–shell rubber (CSR) type impact modifiers, consisting of a rubbery poly(n‐butyl acrylate) core and a rigid poly(methyl methacrylate) shell. To optimize the dispersion of CSR particles into the PBT matrix during melt compounding, the shell surface was modified with different grafting ratios of glycidyl methacrylate (GMA) reactive with PBT chain ends. In PBT blends with a 20 wt % CSR loading, the dispersed rubbery phases showed discernible shapes depending on the grafted GMA content, from predetermined spheres with 0.25 ± 0.05 μm diameters to their aggregates in the 2–3 μm diameter range. As a result, the interparticle spacing (τ) could be controlled from 0.25 to 4.0 μm in the PBT blends containing the fixed rubber loading. The Izod impact strengths of these samples increased significantly below τ = 0.4 μm. Additional thermal and morphological analyses strongly supported the hypothesis that the marked increase in toughness of the blends was related to less ordered lamellar formation of the PBT matrix under the confined geometry. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Polyurethane/polybutyl‐methacrylate interpenetrating polymer networks (IPNs) film was formed on n‐Si substrate by the dropping technique. When aluminum (Al) was vacuum deposited on the top of the film, the Al/IPNs/n‐Si (metal–insulator–semiconductor) structure was fabricated successfully. With the aid of the high‐frequency capacitance–voltage (C‐V) characteristics at room temperature, the dielectric constant of IPNs was obtained. In the C‐V curves, an increased hysteresis at high sweep voltage and a plateau in the depletion region were observed. This plateau indicates that the unsaturated bonds beyond IPNs film could act as electron well at the applied voltage above 10 V. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 721–727, 2000  相似文献   

5.
In this work, butyl acrylate and styrene were used as monomers in the first stage and second stage of polymerization, respectively, and potassium persulfate (K2S2O8) was used as the initiator to synthesize the poly(butyl acrylate)–polystyrene (PBA/PS) composite latex by the method of two-stage soapless emulsion polymerization. The morphology of the latex particles was observed by transmission electron microscopy (TEM), which showed that the composite latex particles had a core–shell structure. The particle-size distribution of the composite latex was very uniform. A thin layer of a PBA-graft-PS copolymer was formed in between the core (PBA) and shell (PS) regions, which thus increased the compatibility between the PBA and PS phases. The process of heating and pressuring influenced the morphology, mechanical properties, and thermal properties of the PBA/PS composite polymer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 13–23, 1998  相似文献   

6.
Fluorinated polyurethane–acrylate (FPUA) hybrid emulsion was prepared by copolymerization of polyurethane, methyl methacrylate, and 1H,1H,2H,2H‐heptadecafluorooctyl acrylate (FA) via emulsion polymerization in the presence of a perfluoronated reactive surfactant. The polyurethane was synthesized from isophorone diisocyanate, poly(propylene glycol)‐1000, dimethylolpropionic acid, 1,4‐butanediol, and 2‐hydroxyethyl methylacrylate. The influence of the monomer on the surface properties, wetting behaviors, particle size, and viscosity of the emulsion was investigated. The mechanical properties of FPUA latex films were improved, and water absorption and contact angle were improved with the addition of methyl methacrylate and FA. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43357.  相似文献   

7.
The performance of acrylonitrile–butadiene–styrene (ABS) core–shell modifier with different grafting degree, acrylonitrile (AN) content, and core–shell ratio in toughening of poly(butylene terephthalate) (PBT) matrix was investigated. Results show PBT/ABS blends fracture in ductile mode when the grafting degree is high, and with the decrease of grafting degree PBT/ABS blends fracture in a brittle way. The surface of rubber particles cannot be covered perfectly for ABS with low grafting degree and agglomeration will take place; on the other hand, the entanglement density between SAN and PBT matrix decreases because of the low grafting degree, inducing poor interfacial adhesion. The compatibility between PBT and ABS results from the strong interaction between PBT and SAN copolymer and the interaction is influenced by AN content. Results show ABS cannot disperse in PBT matrix uniformly when AN content is zero and PBT/ABS fractures in a brittle way. With the addition of AN in ABS, PBT/ABS blends fracture in ductile mode. The core–shell ratio of ABS copolymers has important effect on PBT/ABS blends. When the core–shell ratio is higher than 60/40 or lower than 50/50, agglomeration or cocontinuous structure occurs and PBT/ABS blends display lower impact strength. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 5363–5371, 2006  相似文献   

8.
Hydrophobic drugs are often formulated with hydrophilic polymers to form miscible blends called amorphous solid dispersions. The interaction of moisture with these blends is an important topic, both from stability as well as processing perspectives. In this study, the moisture sorption profiles of four different drug–polymer blends, [felodipine–poly(vinylpyrrolidone) (PVP), indomethacin–PVP, felodipine–hypromellose (HPMC), and felodipine–hypromellose acetate succinate (HPMCAS)] were experimentally determined at 25°C, and analyzed using various mathematical models. It was found that the moisture sorption profiles of the drug–polymer blends could not be reconstructed using the weight‐averaged sum of the moisture sorbed by each of the components. Application of the Flory–Huggins model for ternary systems to extract drug–polymer interaction parameter (χ23) values using known values of water–drug and water–polymer interaction parameters led to ambiguous conclusions about the systems' thermodynamics. χ23 values extracted for felodipine–PVP and indomethacin–PVP using this model ranged from ?9.6 to 26.9 and ?20.4 to 22.0, respectively. It is thought that the presence of specific drug–polymer interactions changed the water–drug and the water–polymer interactions in the system. Combined with the mathematically small contribution from the term encompassing χ23 to the predicted amount of moisture sorbed by the drug–polymer blends, it was concluded that this method cannot be used to unambiguously determine drug–polymer interaction parameters in solid dispersions. Instead, a model with a mean interaction parameter (χ1,23) that considers the drug and the polymer in the blend as a single unit was found to better describe the changing affinity of water for the solid matrix with a change in composition or polymer type. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
To describe the morphology of the core–shell latex particle of methyl methacrylate–butadiene–styrene graft copolymer (MBS) quantitatively, we propose four parameters, that is, the diameter of the core, the shell thickness (TH), the roundness of the core, and the eccentricity (E); we calculated these parameters with geometrical parameters determined by the analysis of transmission electron microscope images. The mean values and distributions of the four parameters based on a certain amount of particles were used for quantitative characterization of MBS latex samples. With increasing monomer‐to‐polymer ratios of the graft polymerization, both the MBS TH and the numbers of homopolymer particles increased, and the core–shell morphology tended to be irregular. For the MBS latices derived from poly(styrene–butadiene) latex with a wide distribution of particle sizes, the core–shell structures of the larger particles were different from those of smaller ones to a certain extent, and both the TH and the E decreased with increasing core size. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 855–861, 2003  相似文献   

10.
Monodisperse crosslinked core–shell micrometer‐sized microspheres bearing a brightly blue fluorescent dye, carbazole, and containing various functional groups in the shell layers were prepared by a two‐stage distillation–precipitation polymerization in acetonitrile in the absence of any stabilizer. Commercial divinylbenzene (DVB), containing 80 vol.% of DVB, was polymerized by distillation–precipitation in acetonitrile without any stabilizer using 2,2′‐azobisisobutyronitrile (AIBN) as the initiator for the first stage of polymerization which resulted in monodisperse polyDVB microspheres used as the core. Several functional monomers, including 2‐hydroxyethyl methacrylate and acrylonitrile together with N‐vinylcarbazole blue fluorescent comonomer, were incorporated into the shell layers with AIBN as initiator during the second stage of polymerization. The resultant core–shell polymer microspheres were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, UV‐visible spectroscopy and fluorescence spectroscopy. Copyright © 2006 Society of Chemical Industry  相似文献   

11.
Methyl methacrylate–butadiene–styrene (MBS) core–shell particles were prepared by grafting styrene and methyl methacrylate onto polybutadiene seeds via emulsion polymerization. All the MBS particles were designed with the same chemical composition, similar grafting degree but different internal structures. The difference in internal structure was realized by controlling the ratio of ‘external grafting’ and ‘internal grafting’ of styrene. The work focused on the influence of the internal structure of MBS core–shell particles on the properties of poly(vinyl chloride)/MBS blends. From transmission electron microscopy, three different internal structures were observed: rare sub‐inclusions, a large number of small sub‐inclusions and large sub‐inclusions. The results of dynamic mechanical analysis illustrated that the different internal structures greatly affected the glass transition temperature Tg of the rubber phase and the storage modulus of the core–shell particles. The notched Izod impact test results showed that the MBS with large sub‐inclusions had the lowest brittle–ductile transition temperature, while the transparency test revealed that the presence of sub‐inclusions in the rubbery phase reduced the transparency of the blend. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
The multiphase morphology of high impact polypropylene (hiPP), which is a reactor blend of polypropylene (PP) with ethylene–propylene copolymer, was investigated by transmission electron microscopy, selected area electron diffraction, atomic force microscopy, and field‐emission scanning electron microscopy techniques in conjunction with an analysis of the hiPP composition and chain structure based on solvent fractionation, 13C‐NMR, and differential scanning calorimetry measurements. A multilayered core–shell structure of the dispersed phase of hiPP in solution‐cast films and the bulk was observed. The inner core was mainly composed of polyethylene (including its long blocks) together with part of PP, the intermediate layer was ethylene–propylene random copolymer, and the outer shell consisted of ethylene–propylene multiblock copolymers. The formation process and controlling factors of the multilayered core–shell structure are discussed. This kind of multiphase morphology of hiPP caused the material to possess both a high rigidity and high toughness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
The tensile properties of the blends containing neat acrylonitrile–butadiene–styrene (ABS), styrene–acrylonitrile (SAN) and the sodium sulphonated SAN ionomer have been investigated as a function of ion content of the ionomer in the blend. The tensile toughness and strength of the blends showed maximum values at a certain ion content of the ionomer in the blend. This is attributed to the enhanced tensile properties of the SAN ionomer by introduction of ionic groups into SAN and the interfacial adhesion between the rubber and matrix phase in the blend. The interfacial adhesion was quantified by NMR solid echo experiments. The amount of interphase for the blend containing the SAN ionomer with low ion content (3·1mol%) was nearly the same as that of ABS, but it decreased with the ion content of the ionomer for the blend with ion content greater than 3·1mol%. Changing the ionomer content in the blends showed a positive deviation from the rule of mixtures in tensile properties of the blends containing the SAN ionomer with low ion content. This seems to result from the enhanced tensile properties of the SAN ionomer, interfacial adhesion between the rubber and matrix, and the stress concentration effect of the secondary particles. © 1998 SCI.  相似文献   

14.
The blends of ionomers of sulfonated (styrene–butadiene–styrene) triblock copolymer with two polyolefins as well as the blends of polystyrene (PSt) with two polar, oil‐resistant elastomers, i.e., chlorohydrin rubber (CHR) and chlorosulfonated polyethylene (CSPE), using the ionomer as compatibilizer were studied. The blends of the ionomer with polypropylene or high density polyethylene showed synergistic effects with respect to tensile strength. With increasing PSt content, the blends change their behavior from thermoplastic elastomer to toughened plastics. The synergism is probably because of the thermoplastic interpenetrating polymer networks formed in the blend. The blends exhibited high resistance against diesel oil or toluene. When PSt was blended with CHR or CSPE using the ionomer as compatibilizer, only 2 or 3% ionomer was needed to enhance the mechanical properties of the blends. The effect is due to the ion–polar interaction of the ionomer with the polar polymer. The enhanced compatibility of the blends by the ionomer was demonstrated by DSC and Scanning electron micrograph. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1887–1894, 2006  相似文献   

15.
Novel phosphorus‐containing polyhedral oligomeric silsesquioxane (POSS)/polyimides (PI) hybrid materials with low dielectric constant and low linear coefficients of thermal expansion (CTE) were prepared and characterized. The POSS/PI hybrid materials were synthesized with octa(aminopropyl)silsesquioxane (OAPS) and a series of phosphorus‐containing polyamide acids(PAA). The PAAs were synthesized with bis(4‐aminophenoxy) phenyl phosphine oxide (BAPPO), 4,4’‐diaminodiphenyl ether (ODA) and 3,3',4,4'‐biphenyl tetracarboxylic diandhydride (BPDA). The structures and properties of the hybrid materials were characterized. And the effect of the phosphorus‐containing structure on the POSS/PI hybrid materials was discussed. The dielectric constants and CTE of the hybrid materials were remarkably lower than that of the unmodified POSS/PI films. The lowest values of dielectric constant and CTE could achieve as low as 2.64 (1 MHz) and 27.45 ppm/K. Besides, the hybrid materials also had excellent thermal properties. The highest 5% weight loss temperature of the hybrid materials was as high as 580°C under air. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42611.  相似文献   

16.
High‐performance hyperbranched poly(phenylene oxide)‐modified bismaleimide resin with high thermal stability, low dielectric constant, and loss was developed, which is made up of hyperbranched poly(phenylene oxide) (HBPPO), 4,4′‐bismaleimidodiphenylmethane (BDM), and o, o′‐diallylbisphenol A (DBA). The curing reactivity, morphology, and performance of BDM/DBA/HBPPO resin were systemically investigated, and similar investigations for BDM/DBA resin were also carried out for comparison. Results show that BDM/DBA/HBPPO and BDM/DBA resins have similar curing mechanism, but the former can be cured at lower temperature than the later; in addition, cured BDM/DBA/HBPPO resin with suitable HBPPO content has better thermal stability and dielectric properties (lower dielectric constant and loss) than BDM/DBA resin. The difference in macroproperties between BDM/DBA/HBPPO and BDM/DBA resins results from the different chemical structures and morphologies of their crosslinking networks. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
A two-stage, multistep soapless emulsion polymerization was employed to prepare various sizes of reactive core–shell particles (CSPs) with butyl acrylate (BA) as the core and methyl methacrylate (MMA) copolymerizing with various concentrations of glycidyl methacrylate (GMA) as the shell. Ethylene glycol dimethacrylate (EGDMA) was used to crosslink either the core or shell. The number of epoxy groups in a particle of the prepared CSP measured by chemical titration was close to the calculated value based on the assumption that the added GMA participated in the entire polymerization unless it was higher than 29 mol %. Similar results were also found for their solid-state 13C-NMR spectroscopy. The MMA/GMA copolymerized and EGDMA-crosslinked shell of the CSP had a maximum glass transition temperature (Tg) of 140°C, which was decreased with the content of GMA at a rate of −1°C/mol %. However, the shell without crosslinking had a maximum Tg of 127°C, which decreased at a rate of −0.83°C/mol %. The Tg of the interphasial region between the core and shell was 65°C, which was invariant with the design variables. The Tg of the BA core was −43°C, but it could be increased to −35°C by crosslinking with EGDMA. The Tg values of the core and shell were also invariant with the size of the CSP. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2069–2078, 1998  相似文献   

18.
In the absence of emulsifier, we prepared stable emulsifier‐free polymethylmethacrylate/polystyrene (PMMA/PSt) copolymer latex by batch method with comonomer N,N‐dimethyl, N‐butyl, N‐methacryloloxylethyl ammonium bromide (DBMEA) by using A1BN as initiator. The size distribution of the latex particles was very narrow and the copolymer particles were spherical and very uniform. Under the same recipe and polymerization conditions, PMMA/PSt and PSt/PMMA composite polymer particle latices were prepared by a semicontinuous emulsifier‐free seeded emulsion polymerization method. The sizes and size distributions of composite latex particles were determined both by quasi‐elastic light scattering and transmission electron microscopy (TEM). The effects of feeding manner and staining agents on the morphologies of the composite particles were studied. The results were as follows: the latex particles were dyed with pH 2.0 phosphotungestic acid solution and with uranyl acetate solution, respectively, revealing that the morphologies of the composite latex particles were obviously core–shell structures. The core–shell polymer structure of PMMA/PSt was also studied by 1H, 13C, 2D NMR, and distortionless enhancement by polarization transfer, or DEPT, spectroscopy. Results showed that PMMA/PSt polymers are composed of PSt homopolymer, PMMA homopolymer, and PMMA‐g‐PSt graft copolymers; results by NMR are consistent with TEM results. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1681–1687, 2005  相似文献   

19.
Crystallization behavior and crystalline morphology of plain polypropylene (PP) and its blend with 0 to 30 wt % nylon 6 were studied by the hot‐stage polarized light microscopy method. Radial growth rate and the size and number of PP spherulites were measured as a function of both the isothermal crystallization temperature and the nylon 6 content of the blend. The study revealed that a reduction in the isothermal crystallization temperature from 135 to 120°C, for both the plain PP and its blend with nylon 6, leads to the formation of a large number of fast‐growing, small spherulites. Moreover, the size and growth rate of PP spherulites decreased on increasing the nylon 6 content of the blend; whereas the number of PP spherulites decreased sharply on initial addition of 10% nylon 6 and, thereafter, increased slightly by further addition of nylon 6. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1769–1775, 2000  相似文献   

20.
Hyperbranched polyvinyl‐ and polymethylethoxysiloxanes were obtained for the first time by heterofunctional polycondensation of the corresponding organoethoxysilanols derived from relevant monosodium organodiethoxysilanolates. Synthesized structures were characterized using 29Si NMR, 1H NMR and infrared spectroscopies, gel permeation chromatography and elemental analysis. On the basis of the obtained hyperbranched polyorganoethoxysiloxanes, new ‘core–shell’ structured polyvinyl‐ and polymethylsilsesquioxanes with adjustable sizes, different crosslinking densities and variable chemical natures of the core–shell surroundings were prepared, investigated and characterized using 1H NMR and infrared spectroscopies, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry and elemental analysis. © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号